

Geometry 1

- This Slideshow was developed to accompany the textbook
 - > Big Ideas Geometry
 - > By Larson and Boswell
 - > 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy <u>rwright@andrews.edu</u> Objectives: By the end of the lesson,

- I can describe a point, a line, and a plane.
- I can define and name segments and rays.
- I can sketch intersections of lines and planes.

1.1 POINTS, LINES, AND PLANES

Book just uses bold capital letter to name a plane.

1.1 Points, Lines, and Planes

- Give two other names for \overrightarrow{BD}
- Give another name for plane ${\mathcal T}$
- Name three collinear points
- Name four coplanar points

DB, m Plane ABE A, B, C A, B, C, E

 $\frac{\overline{RP}}{\overline{QP}, \overline{QR}, \overline{QT}, \overline{QS}} \\
\overline{QT} \text{ and } \overline{QS}; \overline{QP} \text{ and } \overline{QR}$

1.1 Points, Lines, and Planes

• Sketch a plane and two intersecting lines that intersect the plane at separate points.

• Sketch a plane and two lines that do not intersect lying in the plane.

autint

• Sketch a plane and two intersecting lines that lie in the plane.

8 #2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30, 32, 34, 52, 54

Objectives: By the end of the lesson,

- I can measure a line segment.
- I can explain and use the Segment Addition Postulate.

1.2 MEASURING AND CONSTRUCTING SEGMENTS

1.2 Measuring and Constructing Segments					
• Postulate (or Axiom) – Rule that is accepted without proof					
• Theorem – Rule that is proven					
Ruler Postulate		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Rufer	Any line can be turned into a number line				

AB = 3 - (-1) = 4

1.2 Measuring and Constructing Segments What is it? What is it like? Point Placement On the segment with the other points as the endpoints Between Does not have

<u>A</u> B

C

What are examples?

to be the midpoint

1.2 Measuring and Constructing Segments

CD + DE = CECD + 17 = 42CD = 25

XY = 3 - (-5) = 8

Objectives: By the end of the lesson,

- I can find lengths of segments.
- I can find the midpoint of a segment.

1.3 USING MIDPOINT AND DISTANCE FORMULAS

20

1.3 Using Midpoint and Distance Formulas What is it? What is it like? Very middle of the Part of a Segment segment Point that divides Midpoint the segment into В M two congruent segments. *M* is the midpoint of \overline{AB} AM = MB $\overline{AM} \cong \overline{MB}$ Segment Bisector is something What are some examples? that intersects a segment at its midpoint.

• \overline{MO} bisects \overline{NP} at Q. If PQ = 22.6, find PN.

• Point *S* is the midpoint of \overline{RT} . Find *ST*.

$$PQ = \frac{1}{2}PN$$
$$22.6 = \frac{1}{2}PN$$
$$PN = 45.2$$

$$5x - 2 = 3x + 8$$

$$2x - 2 = 8$$

$$2x = 10$$

$$x = 5$$

$$ST = 3(5) + 8 = 23$$

Midpoint =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

• Find the midpoint of G(7, -2) and H(-5, -6)

$$\left(\frac{7+(-5)}{2}, \frac{-2+(-6)}{2}\right) = (1, -4)$$

• The midpoint of *AB* is *M*(5, 8). One endpoint is *A*(2, −3). Find the coordinates of endpoint *B*.

$$(5,8) = \left(\frac{x+2}{2}, \frac{y+(-3)}{2}\right)$$

x-coords: $5 = \frac{x+2}{2} \rightarrow 10 = x+2 \rightarrow x = 8$
y-coords: $8 = \frac{y-3}{2} \rightarrow 16 = y-3 \rightarrow y = 19$
(8, 19)

Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

• What is *PQ* if *P*(2, 5) and *Q*(-4, 8)?

• 24 #2, 4, 6, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 44, 46, 48, 50, 59

$$PQ = \sqrt{(-4-2)^2 + (8-5)^2}$$
$$PQ = \sqrt{(-6)^2 + (3)^2}$$
$$PQ = \sqrt{36+9}$$
$$PQ = \sqrt{45} = 3\sqrt{5} \approx 6.71$$

Objectives: By the end of the lesson,

- I can classify and describe polygons.
- I can find perimeters of polygons in the coordinate plane.
- I can find areas of polygons in the coordinate plane.

1.4 PERIMETER AND AREA IN THE COORDINATE PLANE

You get a Polly gone

1.4 Perimeter and Area in the Coordinate					
Plane					
	Number of sides	Type of Polygon			
	3	Triangle			
	4	Quadrilateral			
	5	Pentagon			
	6	Hexagon			
	7	Heptagon	5		
	8	Octagon			
	9	Nonagon			
	10	Decagon			
	12	Dodecagon			
	13	13-gon	7 12		
	n	n-gon			

Pentagon, convex

Dodecagon, concave

1.4 Perimeter and Area in the Coordinate			
Plane			
Square Side s•P = 4s •A = s^2	Triangle sides a, b, c base b, height ha•P = $a + b + c$ b•A = $\frac{1}{2}bh$		
Rectangle Length ℓ Width w ℓ H •P = $2\ell + 2w$ w •A = ℓw	Circle diameter d radius rr•C = $2\pi r$ •A = πr^2		

1.4 Perimeter and Area in the Coordinate

Plane

- Describe how to find the height from F to \overline{EG} in the triangle.
- Find the perimeter and area of the triangle.

F(7, 3) G(1, 2) (0, 1) (0,

The height is perpendicular to the base, so it hits *EG* at (1, 3). Distance from (1, 3) to (7, 3) = 6

Perimeter: find the lengths of each side EG = 4 $FG = \sqrt{(7-1)^2 + (3-2)^2} = \sqrt{36+1} = \sqrt{37} = 6.08$ $EF = \sqrt{(7-1)^2 + (3-6)^2} = \sqrt{36+9} = \sqrt{45} = 6.71$ P = 4 + 6.08 + 6.71 = 16.79

Area: $\frac{1}{2}(4)(6) = 12$

$$b = 3 - (-2) = 5$$

$$h = 3 - (-3) = 6$$

$$A = bh = (5)(6) = 30$$

Objectives: By the end of the lesson,

• I can measure and classify angles.

• I can find angle measures.

1.5 MEASURING AND CONSTRUCTING ANGLES

 $\angle DEC = 90^{\circ}$ right $\angle DEA = 180^{\circ}$ straight $\angle CEB = 25^{\circ}$ acute $\angle DEB = 115^{\circ}$ obtuse

 $\angle PQR$, $\angle PQS$, $\angle RQS$; $\angle PQS$ is a right angle.

$$2x - 9 + 3x + 6 = 72$$

$$5x - 3 = 72$$

$$5x = 75$$

$$x = 15$$

 $m \angle RSP = 2(15) - 9 = 21^{\circ}$ $m \angle PST = 3(15) + 6 = 51^{\circ}$

1.5 Measuring and Constructing

Angles

- Identify all pairs of congruent angles in the diagram.
- In the diagram, $m \angle PQR = 130^\circ$, $m \angle QRS = 84^\circ$, and $m \angle TSR = 121^\circ$. Find the other angle measures in the diagram.

 $\angle T \cong \angle S, \angle P \cong \angle R$

m∠*PTS* = 121°, m∠*QPT* = 84°

Both the pairs are supplementary

- In the figure, name a pair of
 - complementary angles,
 - supplementary angles,
 - ➤ adjacent angles.

- Are \angle *KGH* and \angle *LKG* adjacent angles?
- Are \angle *FGK* and \angle *FGH* adjacent angles? Explain.

Complementary: $\angle FGK$ and $\angle GKL$ Supplementary: $\angle HGK$ and $\angle GKL$ Adjacent: $\angle FGK$ and $\angle HGK$

No, they do not have a common vertex No, they are inside of each other

- Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 2 = 8^{\circ}$, find $m \angle 1$.
- Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 117^{\circ}$, find $m \angle 4$.

 $\begin{array}{l} 8+x=90 \ \rightarrow \ x=82\\ 117+y=180 \ \rightarrow \ y=63 \end{array}$

• $\angle LMN$ and $\angle PQR$ are complementary angles. Find the measures of the angles if $m \angle LMN = (4x - 2)^{\circ}$ and $m \angle PQR = (9x + 1)^{\circ}$.

 $(4x-2) + (9x+1) = 90 \rightarrow 13x - 1 = 90 \rightarrow 13x = 91 \rightarrow x = 7$ $m \angle LMN = 4(7) - 2 = 26^{\circ}$ $m \angle PQR = 9(7) + 1 = 64^{\circ}$

- Do any of the numbered angles in the diagram below form a linear pair?
- Which angles are vertical angles?

No, no 2 of them form straight lines

 $\angle 1$ and $\angle 4$, $\angle 2$ and $\angle 5$, $\angle 3$ and $\angle 6$

• Two angles form a linear pair. The measure of one angle is 3 times the measure of the other. Find the measure of each angle.

?

x + 3x = 180 $4x = 180 \rightarrow x = 45 \rightarrow$ angles are 45 and 135

- Things you can assume in diagrams.
 - Points are coplanar
 - ➤ Intersections
 - Lines are straight
 - Betweenness
- Things you cannot assume in diagrams
 - Congruence unless stated
 - Right angles unless stated
- 50 #2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 40, 42, 51, 52, 53, 54, 62