Parallel and Perpendicular Lines

Geometry Chapter 3

Geometry 3

- This Slideshow was developed to accompany the textbook
 - Big Ideas Geometry
 - By Larson and Boswell
 - 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

- Objectives: By the end of the lesson,
 - I can identify lines and planes.
 - I can identify parallel and perpendicular lines.
 - I can identify pairs of angles formed by transversals.

Parallel Lines |

Lines that do NOT intersect and are coplanar

Lines go in the same direction

Skew Lines

Lines that do NOT intersect and are on different planes

Lines go in different directions

- Name the lines through point H that appear skew to \overrightarrow{CD}
- Name the lines containing point H that appear parallel to \overrightarrow{CD}
- Name a plane that is parallel to plane CDE and contains point H

AH, EH

GH

BGH

- ▶ In a plane, two lines are either
 - Parallel
 - Intersect

Parallel Postulate

If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.

Perpendicular Postulate

If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

3.1 Pairs of Lines and Angles Transversal Line that intersects two coplanar lines Interior \angle angles that are between the lines $\angle 2, \angle 3, \angle 5, \angle 6$ Exterior \angle angles that are outside of the lines $\angle 1, \angle 4, \angle 7, \angle 8$

Alternate interior angles

interior angles on opposite sides of the transversal

 $\angle 2$ and $\angle 5$, $\angle 3$ and $\angle 6$

Alternate exterior angles

exterior angles on opposite sides of the transversal

 $\angle 1$ and $\angle 8$, $\angle 4$ and $\angle 7$

Consecutive interior angles

interior angles on the same side of the transversal

 $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 5$

Corresponding angles

angles on the same location relative to the transversal

 $\angle 1$ and $\angle 6$, $\angle 2$ and $\angle 7$, $\angle 3$ and $\angle 8$, $\angle 4$ and $\angle 5$

Classify the pair of numbered angles

5

125 #2, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 24, 28, 32, 33, 35, 36 = 20 total

Corresponding
Alternate Exterior
Alternate Interior

- Objectives: By the end of the lesson,
 - I can use properties of parallel lines to find angle measures.
 - I can prove theorems about parallel lines.

- Draw parallel lines on a piece of notebook paper, then draw a transversal.
- Use the protractor to measure all the angles.
- What types of angles are congruent?
 - (corresponding, alt interior, alt exterior)
- ▶ How are consecutive interior angles related?
 - (supplementary)

Corresponding Angles Postulate

If 2 || lines are cut by transversal, then the corrs \angle are \cong

Alternate Interior Angles Theorem

If 2 || lines are cut by transversal, then the alt int \angle are \cong

Alternate Exterior Angles Theorem

If 2 || lines are cut by transversal, then the alt ext \angle are \cong

Consecutive Interior Angles Theorem

If 2 || lines are cut by transversal, then the cons int \angle are supp.

▶ If $m \angle 1 = 105^\circ$, find $m \angle 4$, $m \angle 5$, and $m \angle 8$. Tell which postulate or theorem you use in each case

► If $m \angle 3 = 68^\circ$ and $m \angle 8 = (2x + 4)^\circ$, what is the value of x?

```
m\angle 4 = 105; vertical angles are congruent m\angle 5 = 105; corresponding angles postulate m\angle 8 = 105; alt ext angles theorem m\angle 3 = m\angle 2 m\angle 8 = m\angle 5 \angle 2 and \angle 5 are cons int angles and are supp m\angle 2 + m\angle 5 = 180 m\angle 3 + m\angle 8 = 180 68 + 2x + 4 = 180 2x + 72 = 180 2x = 108 x = 54
```

• Prove that if 2 || lines are cut by a transversal, then the ext angles on the same side of the transversal are supp. ℓ_{\blacktriangle}

▶ Given: *p* || *q*

▶ Prove: $\angle 1$ and $\angle 2$ are supp.

Statements

Reasons

▶ 131 #2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 20, 22, 23, 24, 26, 29, 30, 32, 33, 38 = 20 total

3.3 Proofs with Parallel Lines

- Objectives: By the end of the lesson,
 - I can use theorems to identify parallel lines.
 - I can prove theorems about identifying parallel lines.

Corresponding Angles Converse

If 2 lines are cut by transversal so the corrs \angle are \cong , then the lines are ||.

Alternate Interior Angles Converse

If 2 lines are cut by transversal so the alt int \angle are \cong , then the lines are ||.

Alternate Exterior Angles Converse

If 2 lines are cut by transversal so the alt ext \angle are \cong , then the lines are ||.

Consecutive Interior Angles Converse

If 2 lines are cut by transversal so the cons int \angle are supp., then the lines are $|\cdot|$.

▶ Is there enough information to conclude that *m* || *n*?

Can you prove that the lines are parallel? Explain.

Yes, corresponding angles will both be 75°

Yes, alt ext angles converse Yes, corres angles converse No, should be $\angle 1 \cong \angle 2$ by alt int angles converse

Transitive Property of Parallel Lines

If two lines are parallel to the same line, then they are parallel to each other.

- Paragraph proofs
 - The proof is written in sentences.
 - Still need to have the statements and reasons.

- ▶ Write a paragraph proof to prove that if 2 lines are cut by a transversal so that the alt int \angle s are \cong , then the lines are ||.
- Given: $\angle 4 \cong \angle 5$
- ▶ Prove: *g* || *h*

It is given that $\angle 4 \cong \angle 5$. By the vertical angle congruence theorem, $\angle 1 \cong \angle 4$. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 5$. So, by the Corresponding Angles Converse, g $|\cdot|$ h.

▶ If you use the diagram at the right to prove the Alternate Exterior Angles Converse, what GIVEN and PROVE statements would you use?

▶ 138 #2, 4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 35, 39, 41, 44, 45, 49 = 20 total

Given: $\angle 1 \cong \angle 8$ Prove: j | | k

3.4 Proofs with Perpendicular Lines

- Objectives: By the end of the lesson,
 - I can find the distance from a point to a line.
 - I can prove theorems about perpendicular lines.

3.4 Proofs with Perpendicular

Lines

Find the distance from point *A* to \overrightarrow{BC} .

Use the endpoints from the perpendicular segment (-4, 2) and (-1, 8)

Calculate distance
$$\sqrt{(-1-(-4))^2+(8-2)^2} = \sqrt{3^2+(6)^2} = \sqrt{45} = 3\sqrt{5} = 6.7$$

3.4 Proofs with Perpendicular Lines

Linear Pair Perpendicular Theorem

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

3.4 Proofs with Perpendicular Lines

Perpendicular Transversal Theorem

If a transversal is \bot to 1 of 2 || lines, then it is \bot to the other.

Lines ⊥ to a Transversal Theorem

In a plane, if 2 lines are \bot to the same line, then they are || to each other.

3.4 Proofs with Perpendicular

Lines

 Prove the Perpendicular Transversal Theorem using the diagram and the Alternate Interior Angles Theorem.

- Given: $h \mid\mid k, j \perp h$
- Prove: $j \perp k$

Statements	ı Reasons

STATEMENTS REASONS

- **1.** $h \mid | k, j \perp h$
- **2.** m∠2 = 90°
- 3. $\angle 2 \cong \angle 3$
- **4.** ∠3 ≅ ∠6
- **5.** ∠2 ≅ ∠6
- **6.** m∠2 = m∠6
- **7.** m∠6 = 90°
- **8.** *j* ⊥ *k*

- **1.** Given
- 2. Definition of perpendicular lines
- 3. Vertical Angles Congruence Theorem
- 4. Alternate Interior Angles Theorem
- 5. Transitive Property of Angle Congruence
- 6. Definition of congruent angles
- 7. Substitution Property of Equality
- 8. Definition of perpendicular lines

3.4 Proofs with Perpendicular Lines

▶ Is *b* || *a*?

• Is $b \perp c$?

▶ 146 #2, 10, 12, 14, 16, 18, 20, 21, 24, 26, 34, 40, 42, 45, 46 = 15 total

Yes, lines perpendicular to transversal theorem

Yes, c | | d by the lines \bot to trans theorem; b \bot c by the \bot trans theorem

- Objectives: By the end of the lesson,
 - I can partition directed line segments using slope.
 - I can use slopes to identify parallel and perpendicular lines.

- Partitioning a Directed Line Segment
 - Segment from *A* to *B*
 - Want the ratio of *AP* to *PB* to be something like 3
 - That means there are 3 + 2 = 5 pieces
 - Point *P* is ³/₅ of the way from *A* Find the rise and run

 - Multiply the rise and run by the fraction $\frac{3}{5}$ and add to point A
 - The result is the coordinates of *P*

▶ Find the coordinates of point F along the directed line segment CD so that the ratio of CF to FD is 3 to 5.

$$x = x_1 + fraction \cdot run = -4 + \frac{3}{8}(12) = 0.5$$

 $y = y_1 + fraction \cdot rise = 5 + \frac{3}{8}(-8) = 2$

(0.5, 2)

• Slope =
$$\frac{\text{rise}}{\text{run}}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

- Positive Slope
 - Rises
- Zero Slope
 - Horizontal
- Negative Slope
 - Falls

Vertical

There's **No Slope** to stand on.

3.5A Equations of Parallel and

Darpandicular Linas

Slopes of Parallel Lines

In a coordinate plane, 2 nonvertical lines are parallel iff they have the same slope.

And, any 2 vertical lines are parallel.

 $m_1 = 2$; $m_2 = 2$

Slopes of Perpendicular Lines

In a coordinate plane, 2 nonvertical lines are perpendicular iff the products of their slopes is -1.

Or, Slopes are negative reciprocals.

And, horizontal lines are perpendicular to vertical lines

 $m_1 = 2$; $m_2 = -\frac{1}{2}$

- Tell whether the lines are *parallel*, *perpendicular*, or *neither*.
 - Line 1: through (-2, 8) and (2, -4)
 - Line 2: through (-5, 1) and (-2, 2)

▶ 154 #1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 53, 54, 57 = 13 total

Line 1: $(-4-8)/(2-(-2)) \rightarrow -12/4 \rightarrow -3$

Line 2: $(2-1)/(-2-(-5)) \rightarrow 1/3$

Perpendicular

- Objectives: By the end of the lesson,
 - I can write equations of parallel and perpendicular lines.
 - I can find the distance from a point to a line.

- ▶ Slope-intercept form of a line
 - $\circ y = mx + b$
 - m = slope
 - b = y-intercept
- ▶ To write equations of lines using slope-intercept form
 - Find the slope
 - Find the *y*-intercept
 - · It is given or,
 - Plug the slope and a point into y = mx + b and solve for b
 - \circ Write the equation of the line by plugging in m and b into y = mx + b

• Write an equation of the line that passes through (1, 5) and is parallel to the line with the equation y = 3x - 5.

m = 3 (parallel same slope)

$$y = mx + b$$

$$5 = 3(1) + b$$

$$b = 2$$

$$y = 3x + 2$$

• Write an equation of the line perpendicular to the line in the graph and passing through (3, 1).

$$m_{given} = \frac{1 - (-1)}{3 - 0} = \frac{2}{3}$$

$$m_{\perp} = -\frac{3}{2}$$

$$y = mx + b$$

$$1 = \left(-\frac{3}{2}\right)3 + b$$

$$1 = -\frac{9}{2} + b$$

$$\frac{11}{2} = b$$

$$y = -\frac{3}{2}x + \frac{11}{2}$$

- Find the distance from a point to a line
 - Find the equation of the line perpendicular to the given line and passing through the point.
 - Use a graph or system of equations to find where the lines intersect.
 - Find the distance between the given point and the point of intersection.

Find the distance from the point (6, -2) to the line y = 2x - 4.

154 #12, 14, 16, 18, 20, 22, 24, 36, 38, 46, 62, 64 = 12 total

Equation of Perpendicular line

$$m_{\perp} = -\frac{1}{2}$$

$$y = mx + b$$

$$-2 = -\frac{1}{2}(6) + b$$

$$b = 1$$

$$y = -\frac{1}{2}x + 1$$

Find intersection of two lines (substitution)

$$\begin{cases} y = 2x - 4 \\ y = -\frac{1}{2}x + 1 \end{cases}$$
$$2x - 4 = -\frac{1}{2}x + 1$$
$$\frac{5}{2}x = 5$$
$$x = 2$$
$$y = 2(2) - 4 = 0$$

(2, 0)

Find distance between (6, -2) and (2, 0)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(2 - 6)^2 + (0 - (-2))^2}$$

$$d = \sqrt{16 + 4} = \sqrt{20}$$

$$d = 2\sqrt{5} \approx 4.5$$