

Geometry
Chapter 3

Geometry 3

- This Slideshow was developed to accompany the textbook
- Big Ideas Geometry
- By Larson and Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

3.1 Pairs of Lines and Angles

》) Objectives: By the end of the lesson,

- I can identify lines and planes.
- I can identify parallel and perpendicular lines.
- I can identify pairs of angles formed by transversals.

Parallel Lines

Lines that do NOT intersect and are coplanar Lines go in the same direction

Skew Lines

Lines that do NOT intersect and are on different planes
Lines go in different directions

- Name the lines through point H that appear skew to $\overleftrightarrow{C D}$
- Name the lines containing point H that appear parallel to $\overleftrightarrow{C D}$
- Name a plane that is parallel to plane $C D E$ and contains point H

AH, EH

GH
BGH

- In a plane, two lines are either
- Parallel
- Intersect

Parallel Postulate

If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line.

Perpendicular Postulate

If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line.

Alternate interior angles

interior angles on opposite sides of the transversal
$\angle 2$ and $\angle 5, \angle 3$ and $\angle 6$

Alternate exterior angles

exterior angles on opposite sides of the transversal
$\angle 1$ and $\angle 8, \angle 4$ and $\angle 7$

3. 1 Pairs of Lines and Angles

Consecutive interior angles

interior angles on the same side of the transversal
$\angle 2$ and $\angle 6, \angle 3$ and $\angle 5$

Corresponding angles
angles on the same location relative to the transversal
$\angle 1$ and $\angle 6, \angle 2$ and $\angle 7$, $\angle 3$ and $\angle 8, \angle 4$ and $\angle 5$

- Classify the pair of numbered angles $\stackrel{1}{4}$

$12,14,15,16,20,21,22,24,28,32,33,35,36=$

Corresponding
Alternate Exterior
Alternate Interior

3.2 Parallel Lines and Transversals

》) Objectives: By the end of the lesson,

- I can use properties of parallel lines to find angle measures.
- I can prove theorems about parallel lines.
- Draw parallel lines on a piece of notebook paper, then draw a transversal.
- Use the protractor to measure all the angles.
- What types of angles are congruent? - (corresponding, alt interior, alt exterior)
- How are consecutive interior angles related? - (supplementary)

Corresponding Angles Postulate

If 2 || lines are cut by trans., then the corrs \angle are \cong
Alternate Interior Angles Theorem
If $2|\mid$ lines are cut by trans., then the alt int \angle are \cong
Alternate Exterior Angles Theorem
If $2|\mid$ lines are cut by trans., then the alt ext \angle are \cong
Consecutive Interior Angles Theorem
If $2|\mid$ lines are cut by trans., then the cons int \angle are supp.

- If $\mathrm{m} \angle 1=105^{\circ}$, find $\mathrm{m} \angle 4, \mathrm{~m} \angle 5$, and $\mathrm{m} \angle 8$. Tell which postulate or theorem you use in each case
- If $\mathrm{m} \angle 3=68^{\circ}$ and $\mathrm{m} \angle 8=(2 x+4)^{\circ}$, what is
 the value of x ?
$\mathrm{m} \angle 4=105$; vertical angles are congruent
$\mathrm{m} \angle 5=105$; corresponding angles postulate
$\mathrm{m} \angle 8=105$; alt ext angles theorem
$\mathrm{m} \angle 3=\mathrm{m} \angle 2$
$\mathrm{m} \angle 8=\mathrm{m} \angle 5$
$\angle 2$ and $\angle 5$ are cons int angles and are supp
$\mathrm{m} \angle 2+\mathrm{m} \angle 5=180$
$m \angle 3+m \angle 8=180$
$68+2 x+4=180$
$2 x+72=180$
$2 x=108$
$\mathrm{x}=54$
- Prove that if $2|\mid$ lines are cut by a trans, then the ext angles on the same side of the trans are supp.
- Given: $p \| q$
- Prove: $\angle 1$ and $\angle 2$ are supp.

Statements Reasons

$\mathrm{p}|\mid q$
$\mathrm{m} \angle 1+\mathrm{m} \angle 3=180$
$\angle 2 \cong \angle 3$
$\mathrm{m} \angle 2=\mathrm{m} \angle 3$
$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180$
$\angle 1$ and $\angle 2$ are supp
(given)
(linear pair post)
(corrs angles post)
(def \cong)
(substitution)
(def supp)

3.3 Proofs with Parallel Lines

1> Objectives: By the end of the lesson,

- I can use theorems to identify parallel lines.
- I can prove theorems about identifying parallel lines.

B.3 Prove Lines are Paralle

Corresponding Angles Converse
If 2 lines are cut by trans. so the corrs \angle are \cong, then the lines are ||.

Alternate Interior Angles Converse
If 2 lines are cut by trans. so the alt int \angle are \cong, then the lines are \|.

Alternate Exterior Angles Converse

If 2 lines are cut by trans. so the alt ext \angle are \cong, then the lines are \|.
Consecutive Interior Angles Converse
If 2 lines are cut by trans. so the cons int \angle are supp., then the lines are II.

Yes, corresponding angles will both be 75°

Yes, alt ext angles converse
Yes, corres angles converse
No, should be $\angle 1 \cong \angle 2$ by alt int angles converse

Transitive Property of Parallel Lines

If two lines are parallel to the same line, then they are parallel to each other.

- Paragraph proofs
- The proof is written in sentences.
- Still need to have the statements and reasons.

- Write a paragraph proof to prove that if 2 lines are cut by a trans. so that the alt int $\angle \mathrm{s}$ are \cong, then the lines are \|.
- Given: $\angle 4 \cong \angle 5$
- Prove: $g|\mid h$

It is given that $\angle 4 \cong \angle 5$. By the vertical angle congruence theorem, $\angle 1 \cong \angle 4$. Then by the Transitive Property of Congruence, $\angle 1 \cong \angle 5$. So, by the Corresponding Angles Converse, g || h.

- If you use the diagram at the right to prove the Alternate Exterior Angles Converse, what GIVEN and PROVE statements would you use?
- 138 \#2, $4,6,10,12,14,16,20,22,24,26,28,30,32,35,39,41,44,45,49$

Given: $\angle 1 \cong \angle 8$
Prove: j || k

3.4 Proofs with Perpendicular Lines

1> Objectives: By the end of the lesson,

- I can find the distance from a point to a line.
- I can prove theorems about perpendicular lines.

Use the endpoints from the perpendicular segment $(-4,2)$ and $(-1,8)$
Calculate distance $\sqrt{(-1-(-4))^{2}+(8-2)^{2}}=\sqrt{3^{2}+(6)^{2}}=\sqrt{45}=3 \sqrt{5}=6.7$

Linear Pair Perpendicular Theorem
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

Perpendicular Transversal Theorem

If a trans. is \perp to 1 of $2|\mid$ lines, then it is \perp to the other.

Lines \perp to a Transversal Theorem
In a plane, if 2 lines are \perp to the same line, then they are \|| to each other.

- Prove the Perpendicular Transversal Theorem using the diagram and the Alternate Interior Angles Theorem.
- Given: $h|\mid k, j \perp h$

- Prove: $j \perp k$

Statements

STATEMENTS REASONS

1. $h|\mid k, j \perp h$
2. Given
3. $m \angle 2=90^{\circ}$
4. Definition of perpendicular lines
5. $\angle 2 \cong \angle 3$
6. Vertical Angles Congruence Theorem
7. $\angle 3 \cong \angle 6$
8. Alternate Interior Angles Theorem
9. $\angle 2 \cong \angle 6$
10. Transitive Property of Angle Congruence
11. $m \angle 2=m \angle 6$
12. Definition of congruent angles
13. $m \angle 6=90^{\circ}$
14. Substitution Property of Equality
15. $j \perp k$
16. Definition of perpendicular lines

- Is $b \| a$?
- Is $b \perp c$?

- 146 \#2, 10, 12, 14, 16, 18, 20, 21, 24, 26, 34, 40, 42, 45, $46=15$ total

Yes, c || d by the lines \perp to trans theorem; $b \perp$ c by the \perp trans theorem
3.5A Equations of Parallel and Perpendicular Lines
2) Objectives: By the end of the lesson,

- I can partition directed line segments using slope.
- I can use slopes to identify parallel and perpendicular lines.
, Partitioning a Directed Line Segment
- Segment from A to B
- Want the ratio of $A P$ to $P B$ to be something like 3 to 2
- That means there are $3+2=5$ pieces
- Point P is $\frac{3}{5}$ of the way from A
- Find the rise and run
- Multiply the rise and run by the fraction $\frac{3}{5}$ and add to point A
- The result is the coordinates of P

- Find the coordinates of point F along the directed line segment $C D$ so that the ratio of $C F$ to $F D$ is 3 to 5.
$C(-4,5)^{8 \underbrace{y}}$
$3+5=8$
Fraction of line from C to F is $3 / 8$
Rise $=-8$
Run $=12$

$$
\begin{gathered}
x=x_{1}+\text { fraction } \cdot \text { run }=-4+\frac{3}{8}(12)=0.5 \\
y=y_{1}+\text { fraction } \cdot \text { rise }=5+\frac{3}{8}(-8)=2
\end{gathered}
$$

$(0.5,2)$

- Slope $=\frac{\text { rise }}{\text { run }}$
$\downarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- Positive Slope
- Rises
- Zero Slope
- Horizontal

- Negative Slope
- Falls
- No Slope (Undefined)

There's No Slope to stand on.

5A Equations of Parallel anc
 Slopes of Parallel Lines

In a coordinate plane, 2 nonvertical lines are parallel iff they have the same slope.
And, any 2 vertical lines are parallel.

$$
m_{1}=2 ; m_{2}=2
$$

Slopes of Perpendicular Lines
In a coordinate plane, 2 nonvertical lines are perpendicular iff the products of their slopes is -1 .
Or, Slopes are negative reciprocals.
And, horizontal lines are perpendicular to vertical lines

$$
m_{1}=2 ; m_{2}=-1 / 2
$$

- Tell whether the lines are parallel, perpendicular, or neither.
- Line 1: through $(-2,8)$ and $(2,-4)$
- Line 2: through $(-5,1)$ and $(-2,2)$
- 154 \#1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 53, 54, 57 = 13 total

Line 1: $(-4-8) /(2-(-2)) \rightarrow-12 / 4 \rightarrow-3$
Line 2: $(2-1) /(-2-(-5)) \rightarrow 1 / 3$
Perpendicular

3.5B Equations of Parallel and Perpendicular Lines

》》 Objectives: By the end of the lesson,

- I can write equations of parallel and perpendicular lines.
- I can find the distance from a point to a line.

- Slope-intercept form of a line
- $y=m x+b$
- $m=$ slope
- $b=y$-intercept
- To write equations of lines using slope-intercept form
- Find the slope
- Find the y-intercept
- It is given or,
- Plug the slope and a point into $y=m x+b$ and solve for b
f the line by plugging in m and b into $y=m x+b$

- Write an equation of the line that passes through $(1,5)$ and is parallel to the line with the equation $y=3 x-5$.
$m=3$ (parallel same slope)

$$
\begin{gathered}
y=m x+b \\
5=3(1)+b \\
b=2 \\
y=3 x+2
\end{gathered}
$$

- Write an equation of the line perpendicular to the line in the graph and passing through $(3,1)$.

$$
\begin{gathered}
m_{\text {given }}=\frac{1-(-1)}{3-0}=\frac{2}{3} \\
m_{\perp}=-\frac{3}{2} \\
y=m x+b \\
1=\left(-\frac{3}{2}\right) 3+b \\
1=-\frac{9}{2}+b \\
\frac{11}{2}=b \\
y=-\frac{3}{2} x+\frac{11}{2}
\end{gathered}
$$

3.5B Equations of Parallel and Perpendicular Lines

- Find the distance from a point to a line
- Find the equation of the line perpendicular to the given line and passing through the point.
- Use a graph or system of equations to find where the lines intersect.
- Find the distance between the given point and the point of intersection.

3.5B Equations of Parallel and Perpendicular Lines

- Find the distance from the point $(6,-2)$ to the line $\nu=2 x-4$.

154 \#12, 14, $22,24,36,38,46,62,64=12$ total

Equation of Perpendicular line

$$
\begin{gathered}
m_{\perp}=-\frac{1}{2} \\
y=m x+b \\
-2=-\frac{1}{2}(6)+b \\
b=1 \\
y=-\frac{1}{2} x+1
\end{gathered}
$$

Find intersection of two lines (substitution)

$$
\left.\left.\begin{array}{c}
\left\{\begin{array}{c}
y=2 x-4 \\
y=-\frac{1}{2} x+1
\end{array}\right. \\
2 x-4=-\frac{1}{2} x+1 \\
\frac{5}{2} x=5
\end{array}\right\} \begin{array}{c}
x=2
\end{array}\right\}
$$

$(2,0)$
Find distance between $(6,-2)$ and $(2,0)$

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
d=\sqrt{(2-6)^{2}+(0-(-2))^{2}} \\
d=\sqrt{16+4}=\sqrt{20} \\
d=2 \sqrt{5} \approx 4.5
\end{gathered}
$$

