Congruent Triangles

Geometry
Chapter 5

Geometry 5

- This Slideshow was developed to accompany the textbook
- Big Ideas Geometry
- By Larson and Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by

Richard Wright, Andrews Academy

After this lesson...

- I can classify triangles by sides and by angles.
- I can prove theorems about angles of triangles.
- I can find interior and exterior angle measures of triangles.

5.1 ANGLES OF TRIANGLES

5.1 Angles of Triangles

Classify Triangles by Sides

Scalene Triangle
No congruent sides

Isosceles Triangle
Two congruent
sides

Equilateral
Triangle
All congruent

5.1 Angles of Triangles

Classify Triangles by Angles

Acute Triangle 3 acute angles

Obtuse Triangle

Right Triangle
1 right angle

1 obtuse angle

5.1 Angles of Triangles

- Classify the following triangle by sides and angles

Scalene, Acute
Isosceles, Right

5.1 Angles of Triangles

- $\triangle A B C$ has vertices $A(0,0), B(3,3)$, and $C(-3,3)$. Classify it by is sides. Then determine if it is a right triangle.

Find length of sides using distance formula
$A B=V\left((3-0)^{2}+(3-0)^{2}\right)=V(9+9)=V 18 \approx 4.24$
$B C=V\left((-3-3)^{2}+(3-3)^{2}\right)=V\left((-6)^{2}+0\right)=v(36)=6$
$A C=V\left((-3-0)^{2}+(3-0)^{2}\right)=V(9+9)=\vee 18 \approx 4.24$
Isosceles
Check slopes to find right angles (perpendicular)
$m_{A B}=(3-0) /(3-0)=1$
$m_{B C}=(3-3) /(-3-3)=0$
$m_{A C}=(3-0) /(-3-0)=-1$
$A B \perp A C$ so it is a right triangle

5.1 Angles of Triangles

- Take a triangle and tear off two of the angles.
- Move the angles to the $3^{\text {rd }}$ angle.
- What shape do all three angles form?

Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

$$
m \angle A+m \angle B+m \angle C=180^{\circ}
$$

Straight line

5.1 Angles of Triangles

Exterior Angle Theorem

The measure of an exterior angle of a triangle = the sum of the 2 nonadjacent interior angles.
$\mathrm{m} \angle 1=\mathrm{m} \angle A+\mathrm{m} \angle B$

Proof:

```
m}\angleA+m\angleB+m\angleACB=18\mp@subsup{0}{}{\circ} (triangle sum theorem
m}\angle1+m\angleACB=18\mp@subsup{0}{}{\circ}\quad\mathrm{ (linear pair theorem)
m}\angle1+m\angleACB=m\angleA+m\angleB+m\angleACB (substitution)
m}\angle1=m\angleA+m\angle
(subtraction)
```


5.1 Angles of Triangles

Corollary to the Triangle Sum Theorem
The acute angles of a right triangle are complementary.
$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=90^{\circ}$

The proof involves saying that all three angles $=180$. Since $m \angle C$ is $90, m \angle A+m \angle B=90$.

5.1 Angles of Triangles

- Find the measure of $\angle 1$ in the diagram.

- Find the measures of the acute angles in the diagram.

$40+3 \mathrm{x}=5 \mathrm{x}-10 \rightarrow 50=2 \mathrm{x} \rightarrow \mathrm{x}=25$
$m \angle 1+40+3 x=180 \rightarrow m \angle 1+40+3(25)=180 \rightarrow m \angle 1+40+75=180 \rightarrow m \angle 1=65$
$2 \mathrm{x}+\mathrm{x}-6=90 \rightarrow 3 \mathrm{x}=96 \rightarrow \mathrm{x}=32$
Top angle: $2 x \rightarrow 2(32)=64$
Angle at right: $x-6 \rightarrow 32-6=26$

5.1 Angles of Triangles

- 228 \# $2,4,6,10,12,14,16,18,20,22,24,26,28,32,42$, $44,48,55,58,59=20$ total

After this lesson...

- I can use rigid motions to show that two triangles are congruent.
- I can identify corresponding parts of congruent polygons.
- I can use congruent polygons to solve problems.

5.2 CONGRUENT POLYGONS

5.2 Congruent Polygons

Congruent \cong

Exactly the same shape and size.

Congruent

Not Congruent

5.2 Congruent Polygons

- $\angle \mathrm{A} \cong \angle \mathrm{D}$
$\angle \mathrm{B} \cong \angle \mathrm{E}$
$\overline{B C} \cong \overline{E F}$
$\angle \mathrm{C} \cong \angle \mathrm{F}$
$\overline{A C} \cong \overline{D F}$

5.2 Congruent Polygons

- In the diagram, $\mathrm{ABGH} \cong \mathrm{CDEF}$
- Identify all the pairs of congruent corresponding parts

- Find the value of x and find $m \angle H$.

```
AB\congCD,BG\congDE,GH\congEF,AH\congCF
AN\cong\angleC,\angleB\cong\angleD,\angle\textrm{G}\cong\angle\textrm{E},\angle\textrm{H}\cong\angle\textrm{F}
4x+5 = 105
4x=100
x = 25
m}\angle\textrm{H}=10\mp@subsup{5}{}{\circ
```


5.2 Congruent Polygons

- Show that $\triangle \mathrm{PTS} \cong \triangle \mathrm{RTQ}$

All of the corresponding parts of $\triangle P T S$ are congruent to those of $\triangle R T Q$ by the indicated markings, the Vertical Angle Theorem and the Alternate Interior Angle theorem.

5.2 Congruent Polygons

Third Angle Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are congruent.

Properties of Congruence of Triangles
Congruence of triangles is Reflexive, Symmetric, and Transitive
$75+20+?=180$
$95+$? $=180$
? $=85$

5.2 Congruent Polygons

- In the diagram, what is $\mathrm{m} \angle \mathrm{DCN}$?

- By the definition of congruence, what additional information is needed to know that $\triangle N D C \cong \triangle N S R$?
$\mathrm{m} \angle \mathrm{DCN}=75^{\circ}$; alt int angle theorem (or $3^{\text {rd }}$ angle theorem)
$D N \cong S N, D C \cong S R$

5.2 Congruent Polygons

- 235 \#2, $3,4,6,8,10,12,13,14,15,17,18,20,21,24$, $26,28,30,31,32=20$ total

After this lesson...

- I can use the SAS Congruence Theorem.

5.3 PROVING TRIANGLE CONGRUENCE BY SAS

5.3 Proving Triangle Congruence by SAS

SAS (Side-Angle-Side Congruence Postulate)
If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent

The angle must be between the sides!!!

5.3 Proving Triangle Congr

- Given B is the midpoint of $\overline{A D}$. $\angle A B C$ and $\angle D B C$ are right angles.
- Prove $\triangle A B C \cong \triangle D B C$

Statements

B is the midpoint of $\overline{A D} . \angle A B C$ and $\angle D B C$ are right angles (given)
$\overline{A B} \cong \overline{B D}$ (definition of midpoint)
$\angle A B C \cong \angle D B C$ (rt. Angles are \cong)
$\overline{B C} \cong \overline{B C}$ (reflexive)
$\triangle A B C \cong \triangle D B C$ (SAS)

5.3 Proving Triangle Congruenc

- What can you conclude about $\triangle P T S$ and $\triangle R T Q$? Explain.
- 241 \#2, $4,6,7,8,10,12,17,18,19,23,24$, 27, 29, 31 = 15 total

$\mathrm{PT} \cong \mathrm{TR}$ and $\mathrm{ST} \cong \mathrm{TQ}$ (given)
$\angle P T S \cong \angle R T Q$ (vertical angles are \cong)
$\triangle P T S \cong \triangle R T Q$ (SAS)

After this lesson...

- I can prove and use theorems about isosceles triangles.
- I can prove and use theorems about equilateral triangles.

5.4 EQUILATERAL AND ISOSCELES TRIANGLES

5.4 Equilateral and Isosceles Triangles

- Parts of an Isosceles Triangle

5.4 Equilateral and Isosceles Triangles

Base Angles Theorem
If two sides of a triangle are congruent, then the angles opposite them are congruent.

Converse of Base Angles Theorem
If two angles of a triangle are congruent, then the two sides opposite them are congruent.

5.4 Equilateral and Isosceles Triangles

- Complete the statement
- If $\overline{H G} \cong \overline{H K}$, then \angle ? $\cong \angle$? .
- If $\angle \mathrm{KHJ} \cong \angle \mathrm{KJH}$, then $? \cong$?

$\angle \mathrm{HKG} \cong \angle \mathrm{HGK}$
$K J \cong K H$

5.4 Equilateral and Isosceles Triangles

Corollary to the Base Angles Theorem
If a triangle is equilateral, then it is equiangular.
Corollary to the Converse of Base Angles Theorem
If a triangle is equiangular, then it is equilateral.

5.4 Equilateral and Isosceles Triangles

- Find ST
- Find $m \angle T$

$\mathrm{ST}=5$
$\mathrm{m} \angle \mathrm{T}=60^{\circ}$ (all angles in equilateral/equiangular triangles are 60°)

5.4 Equilateral and Isosceles Triangles

- Find the values of x and y

- 248 \#2, $4,6,8,12,14,16,18,20,21,22,24,27,28,30$, $36,38,39,40,43=20$ total
$x=60$; equilateral triangle
Each base angle by y; $60+?=90 \rightarrow$? $=30$
Angle sum theorem: $30+30+y=180 \rightarrow y=120$

After this lesson...

- I can use the SSS Congruence Theorem.
- I can use the Hypotenuse-Leg Congruence Theorem.

5.5 PROVING TRIANGLE CONGRUENCE BY SSS

5.5 Proving Triangle Congruence by SSS

SSS (Side-Side-Side Congruence Postulate)
If three sides of one triangle are congruent to three sides of another triangle, then the two triangles are congruent

- True or False
- $\Delta \mathrm{DFG} \cong \Delta \mathrm{HJK}$

- $\triangle \mathrm{ACB} \cong \triangle C A D$

True

False

| 5.5 Proving Triangle Congruence |
| :--- | :--- |
| - Given: $\overline{A B} \cong \overline{D C} ; \overline{A D} \cong \overline{B C}$ |
| -Prove:
 SABD
 Statements |

$A B \cong D C ; A D \cong C B$
$B D \cong B D$
$\triangle \mathrm{ABD} \cong \triangle C D B$
(given)
(reflexive)
(SSS)

5.5 Proving Triangle Congruence by SSS

- Stable structures are made out of triangles
- Determine whether the figure is stable.

Not stable

Stable since has triangular construction

Not stable, lower section does not have triangular construction

5.5 Proving Triangle Congruence by SSS

- Right triangles are special
- If we know two sides are congruent we can use the Pythagorean Theorem (ch 7) to show that the third sides are congruent

5.5 Proving Triangle Congruence by SSS

HL (Hypotenuse-Leg Congruence Theorem)
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the two triangles are congruent

5.5 Proving Triangle Congruence by SSS

- Given: $\angle A B C$ and $\angle B C D$ are rt $\angle \mathrm{s} ; \overline{A C} \cong \overline{B D}$
- Prove: $\triangle \mathrm{ACB} \cong \triangle \mathrm{DBC}$

Statements

\qquad Reasons
$\angle A B C$ and $\angle B C D$ are rt $\angle \mathrm{s} ; \mathrm{AC} \cong B D$
$\triangle \mathrm{ACB}$ and $\triangle \mathrm{DBC}$ are rt \triangle
$B C \cong C B$
$\triangle \mathrm{ACB} \cong \triangle \mathrm{DBC}$
(given)
(def rt Δ)
(reflexive)

5.5 Proving Triangle Congruence by SSS

- 256 \#1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 18, 20, 22, 26, 28, 31, $32,34,35,36=20$ total

After this lesson...

- I can prove the AAS Congruence Theorem.
- I can use the ASA and AAS Congruence Theorems.

5.6 PROVING TRIANGLE CONGRUENCE BY ASA AND AAS

5.6 Proving Triangle Congruence by ASA and AAS

- Use a ruler to draw a line of 5 cm .
- On one end of the line use a protractor to draw a 30° angle.
- On the other end of the line draw a 60° angle.
- Extend the other sides of the angles until they meet.
- Compare your triangle to your neighbor's.
- This illustrates ASA.

Everyone's triangle should be congruent

5.6 Proving Triangle Congruence by ASA and AAS

ASA (Angle-Side-Angle Congruence Postulate)
If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent

The side must be between the angles!

5.6 Proving Triangle Congruence by ASA and AAS

AAS (Angle-Angle-Side Congruence Theorem)
If two angles and a non-included side of one triangle are congruent to two angles and a non-included side of another triangle, then the two triangles are congruent

The side is NOT
between the angles!

5.6 Proving Triangle Congruence by ASA and AAS

- In the diagram, what postulate or theorem can you use to prove that $\Delta \mathrm{RST} \cong \Delta \mathrm{VUT}$?

$\angle \mathrm{RTS} \cong \angle \mathrm{UTV}$ by Vert. Angles are Congruent
$\Delta \mathrm{RST} \cong \Delta \mathrm{VUT}$ by AAS

5.6 Proving Triangle Congruence by ASA and AAS

- Given: $\overline{D H} \| \overline{G F}, \overline{D H} \cong \overline{G F}$
- Prove: $\triangle D E H \cong \triangle G E F$

Statements
Reasons
$\overline{D H} \| \overline{G F}, \overline{D H} \cong \overline{G F}$
$\angle D \cong \angle G, \angle H \cong \angle F$
$\Delta D E H \cong \Delta G E F$
(given)
(alt int angles thrm)
(ASA)

5.6 Proving Triangle Congruence by ASA and AAS

- Given: $\overline{R S} \cong \overline{V U}, \angle S \cong \angle U$
- Prove: $\triangle R S T \cong \triangle V U T$

Statements Reasons

$\overline{R S} \cong \overline{V U}, \angle S \cong \angle U$
$\angle R T S \cong \angle V T U$
$\Delta \mathrm{RST} \cong \Delta \mathrm{VUT}$

(given)
(vert angles \cong)
(AAS)

5.6 Proving Triangle Congruence by ASA and AAS

- 264 \#2, $4,6,8,12,14,16,22,24,28,35,38,39,40,41=$ 15 total

After this lesson...

- I can use congruent triangles to prove statements.
- I can use congruent triangles to solve real-life problems.
- I can use congruent triangles to prove constructions.

5.7 USING CONGRUENT TRIANGLES

5.7 Using Congruent Triangles

- By the definition of congruent triangles, we know that the corresponding parts have to be congruent

CPCTC
Corresponding Parts of Congruent Triangles are Congruent Your book just calls this "definition of congruent triangles"

5.7 Using Congruent Triangles

- To show that parts of triangles are congruent
- First show that the triangles are congruent using oSSS, SAS, ASA, AAS, HL
- Second say that the corresponding parts are congruent using
oCPCTC or "def $\cong \Delta$ "

5.7 Using Congruent Triangles

- Write a plan for a proof to show that $\angle \mathrm{A} \cong \angle \mathrm{C}$
- Show that $\overline{B D} \cong \overline{B D}$ by reflexive
- Show that triangles are \cong by SSS
- Say $\angle \mathrm{A} \cong \angle \mathrm{C}$ by def $\cong \triangle$ or CPCTC

5.7 Using Congruent Trian

- Given: $\overline{A B} \cong \overline{D E}, \overline{A B} \| \overline{D E}$
- Prove: C is the midpoint of $\overline{A B}$

Prove: C is the midpoir

$\overline{A B} \cong \overline{D E}, \overline{A B} \| \overline{D E}$
$\angle B \cong \angle D, \angle A \cong \angle E$
$\triangle A B C \cong \triangle E D C$
$\overline{\boldsymbol{A C}} \cong \overline{\boldsymbol{C E}}$
C is midpoint of $\overline{A E}$
(given)
(Alt. Int. \angle Thrm)
(ASA)
(CPCTC)
(Def midpoint)

5.7 Using Congruent Triangles

- $271 \# 2,3,4,6,8,10,13,17,19,20,23,25,26,27,28=$ 15 total

After this lesson...

- I can place figures in a coordinate plane.
- I can write plans for coordinate proofs.
- I can write coordinate proofs.

5.8 COORDINATE PROOFS

5.8 Coordinate Proofs

Coordinate Proof

- Place geometric figures in a coordinate plane (graph)
- When variables are used for the coordinates, the result is true for all figures of that type
- Use formulas to prove things
- Midpoint formula
- Distance formula
- Slope formula

5.8 Coordinate Proofs

- Place figures for Coordinate Proof

1. Use the origin as a vertex or center.
2. Place at least one side of the polygon on an axis.
3. Usually keep the figure within the first quadrant.
4. Use coordinates that make computations as simple as possible.

- You will prove things by calculating things like slope, distance, and midpoints

5.8 Coordinate Proofs

5.8 Coordinate Proofs

- Place a square in a coordinate plane so

- Place a right triangle in a coordinate

5.8 Coordinate Proofs

- Place an isosceles triangle in a coordinate plane with vertices $P(-2 a, 0), Q(0, a)$, and $R(2 a, 0)$. Then find the side lengths and the coordinates of the midpoint of each side.

$$
\begin{aligned}
& P Q=\sqrt{(0-(-2 a))^{2}+(a-0)^{2}}=\sqrt{4 a^{2}+a^{2}}=\sqrt{5 a^{2}}=a \sqrt{5} ; M_{\overline{P Q}}\left(\frac{-2 a+0}{2}, \frac{0+a}{2}\right) \\
& =\left(-a, \frac{a}{2}\right) \\
& \quad Q R=\sqrt{(0-2 a)^{2}+(a-0)^{2}}=\sqrt{4 a^{2}+a^{2}}=\sqrt{5 a^{2}}=a \sqrt{5} ; M_{\overline{Q R}}\left(\frac{2 a+0}{2}, \frac{0+a}{2}\right) \\
& \quad=\left(a, \frac{a}{2}\right) \\
& P R=\sqrt{(2 a-(-2 a))^{2}+(0-0)^{2}}=\sqrt{16 a^{2}}=4 a ; M_{\overline{P R}}\left(\frac{2 a+(-2 a)}{2}, \frac{0+0}{2}\right)=(0,0)
\end{aligned}
$$

5.8 Coordinate Proofs

- Given Coordinates of vertices of quadrilateral OTUV
- Prove $\angle T O U \cong \angle V U O$

- 277 \#2, $4,6,8,11,12,15,16,22,23$, $25,26,29,32,33=15$ total

The slope of $\overline{T O}$ is $\frac{k-0}{m-0}=\frac{k}{m}$.
The slope of $\overline{U V}$ is $\frac{k-0}{(m+h)-h}=\frac{k}{m}$.
Because they have the same slope, $\overline{T O} \| \overline{U V}$.
By the Alternate Interior Angles Theorem, $\angle T O U \cong \angle V U O$.

