QUADRILATERALS AND OTHER POLYGONS

Geometry Chapter 7

7.1 ANGLES OF POLYGONS

After this lesson.

- I can find the sum of the interior angle measures of a polygon.
- I can find interior angle measures of polygons.
- I can find exterior angle measures of polygons.

7.1 ANGLES OF POLYGONS

- Polygon
- Closed figure made of straight segments
- Diagonal
- Segment that joins nonconsecutive vertices

Notice that the pentagon is made into 3 triangles.

7.1 Angles of Polygons

- All polygons can be separated into triangles
- The sum of the angles of a triangle is 180°
- For the pentagon, multiply that by 3

Polygon Interior Angles Theorem

Sum of the measures of the interior angles of a n-gon is $(n-2) 180^{\circ}$

$$
S=(n-2) \cdot 180^{\circ}
$$

Sum of the measures of the interior angles of a quadrilateral is 360°

7.1 ANGLES OF POLYGONS

- The coin is a regular 11-gon. Find the sum of the measures of the interior angles.

- The sum of the measures of the interior angles of a convex polygon is 1440°. Classify the polygon by the number of sides.
- Try \#4, 6

$$
\begin{aligned}
& S=(n-2) 180^{\circ} \\
& S=(11-2) 180^{\circ}=1620^{\circ} \\
& 1440^{\circ}=(n-2) 180^{\circ} \\
& 8=n-2 \\
& n=10
\end{aligned}
$$

7.1 ANGLES OF POLYGONS

- Find $m \angle T$

- Try \#10

$$
\begin{aligned}
& 93^{\circ}+156^{\circ}+85^{\circ}+x+x=540^{\circ} \\
& 334+2 x=540 \\
& 2 x=206 \\
& x=103
\end{aligned}
$$

7.1 ANGLES OF Polygons

- Equilateral Polygon
- All sides congruent

- Equiangular Polygon
- All angles congruent

- Regular Polygon
- All sides and angles congruent

7.1 ANGLES OF POLYGONS

Polygon Exterior Angles Theorem

Sum of the measures of the exterior angles of a convex polygon 360°
-What is the measure of an exterior angle of a regular pentagon?

- What is the measure of an interior angle of a regular pentagor
- Try \#34

$$
\begin{aligned}
\frac{360}{5} & =72^{\circ} \\
180 & =x+72 \\
x & =108
\end{aligned}
$$

Or

$$
\begin{gathered}
S=(5-2) \cdot 180 \\
S=540 \\
\text { int angle }=\frac{540}{5}=108
\end{gathered}
$$

7.2 PROPERTIES OF ParALLELOGRAMS

After this lesson.

\author{

- I can prove properties of parallelograms.
}
- I can use properties of parallelograms.
- I can solve problems involving parallelograms in the coordinate plane.

7.2 Properties of Parallelograms

- On scrap paper draw two sets of parallel lines that intersect each other.
- Measure opposite sides. How are opposite sides related?
- Measure opposite angles. How are opposite angles related?

7.2 Properties of Parallelograms

- Definition of parallelogram
- Quadrilateral with opposite sides narallel

Opposite sides of parallelogram are congruent
Opposite angles of a parallelogram are congruent

Theorems were demonstrated in the focus

7.2 Properties of Parallelograms

Consecutive angles in a parallelogram are supplementary

- Remember from parallel lines (chapter 3) that consecutive interior angles are supplementary
Diagonals of a parallelogram bisect each other
- Draw diagonals on your parallelogram
- Measure each part of the diagonals to see if they bisect each other.

$x=70$ Opposite angles of $\square \cong$
$y=42$ Opposite sides of $\square \cong$
$z=20$ Alternate interior angles thrm

7.2 Properties of Parallelograms

- Find NM
- Find $m \angle J M L$

- Find $m \angle K M L$
- Try \#12
$M N=N K=2$
$m \angle J M L+110^{\circ}=180^{\circ} \rightarrow m \angle J M L=70^{\circ}$
$30^{\circ}+m \angle K M L=70^{\circ} \rightarrow m \angle K M L=40^{\circ}$

7.2 Properties of Parallelograms

- Three vertices of $\square D E F G$ are $D(-1,4)$, $E(2,3)$, and $F(4,-2)$. Find the coordinates of vertex G.
- Try \#26

Graph points. Use rise and run of DE starting at F to find G. Use rise and run of EF to start at D to verify G .
$(1,-1)$

7.3 Proving That a Quadrilateral IS A PARALLELOGRAM

After this lesson.

- I can identify features of a parallelogram.
- I can prove that a quadrilateral is a parallelogram.
- I can find missing lengths that make a quadrilateral a parallelogram.
- I can show that a quadrilateral in the coordinate plane is a parallelogram.
7.3 PRoving That a Quadrilateral Is a Parallelogram
- Review
- What are the properties of parallelograms?
- Opposite sides parallel
- Opposite sides are congruent
- Opposite angles are congruent
- Diagonals bisect each other

7.3 Proving That a Quadrilateral Is a PARALLELOGRAM

- If we can show any of these things in a quadrilateral, then it is a parallelogram.
- If both pairs of opposite sides of a quad are parallel, then it is a parallelogram (definition of parallelogram)
- If both pairs of opposite sides of a quad are congruent, then it is a parallelogram.
- If both pairs of opposite angles of a quad are congruent, then it is a parallelogram.
- If the diagonals of a quad bisect each other, then it is a parallelogram.
- If one pair of opposite sides of a quad is both parallel and congruent, then it is a parallelogram.

7.3 Proving That a Quadrilateral Is a

 Parallelogram- Is it a parallelogram?

- Try \#2

Yes; 1 pair of opposite sides parallel and congruent

No, congruent is not same as parallel

7.3 Proving That a Quadrilateral Is a Parallelogram

- For what values of x and y is quadrilateral STUV a parallelogram?

- Try \#8

$$
\begin{aligned}
& 24-x=x+6 \\
& 24=2 x+6 \\
& 18=2 x \\
& x=9 \\
& y=2 x+3 \\
& y=2(9)+3 \\
& y=21
\end{aligned}
$$

7.3 Proving That a Quadrilateral Is a PARALLELOGRAM

- Find x so that $M N P Q$ is a parallelogram.

- Try \#14

Diagonals bisect each other

$$
\begin{gathered}
2 x=10-3 x \\
5 x=10 \\
x=2
\end{gathered}
$$

7.3 Proving That a Quadrilateral Is a Parallelogram

- Show that quadrilateral $A B C D$ is a parallelogram.

- Try \#16

Show the diagonals have the same midpoint (bisect each other) Or show the opposite sides have the same slope (parallel)

7.4 Properties of Special PARALLELOGRAMS

After this lesson.

- I can identify special quadrilaterals.

- I can explain how special parallelograms are related.
- I can find missing measures of special parallelograms.
- I can identify special parallelograms in a coordinate plane.

7.4 Properties of Special Parallelograms

- All of these are parallelograms
- Rhombus
- Four \cong sides
- Rectangle
- Four right $\angle \mathrm{s}$
- Square

- Rhombus and Rectangle
- Four \cong sides
- Four right $\angle \mathrm{s}$

7.4 Properties of Special Parallelograms

7.4 Properties of Special Parallelograms

- For any rectangle $E F G H$, is it always or sometimes true that $\overline{F G} \cong \overline{G H}$?
- Classify the figure.
-Try \#2, 8

Sometimes, $\overline{F G}$ and $\overline{G H}$ are consecutive sides, not opposite
Rhombus (parallel sides which makes parallelogram; opposite sides are \cong and adjacent sides are \cong, so all sides are \cong)
7.4 Properties of Special Parallelograms

- Diagonals

Rhombus: diagonals are perpendicular

Rhombus: diagonals bisect opposite angles

Rectangle: diagonals are congruent

7.4 Properties of Special Parallelograms

- $A B C D$ is a rhombus
- Find $m \angle B C E$
- Find $m \angle A B D$

- Find $m \angle A E D$
- Try \#12

Opposite angles $\cong: m \angle B C E=53^{\circ}$
$\triangle \mathrm{ABE}$ is right $\triangle: m \angle A B D=90^{\circ}-53^{\circ}=37^{\circ}$

Diagonals are \perp : $m \angle A E D=90^{\circ}$

7.4 Properties of Special Parallelograms

- In rectangle $Q R S T, Q S=7 x-15$ and $R T=2 x+25$. Find the lengths of the diagonals of $Q R S T$.

- Try \#24

Diagonals of Rectangle are \cong :

$$
\begin{gathered}
7 x-15=2 x+25 \\
5 x-15=25 \\
5 x=40 \\
x=8 \\
Q S=R T=7(8)-15=41
\end{gathered}
$$

7.5 Properties of Trapezoids AND KITES

After this lesson.

- I can identify trapezoids and kites.
- I can use properties of trapezoids and kites to solve problems.
-I can find the length of the midsegment of a trapezoid.
- I can explain the hierarchy of quadrilaterals.

7.5 Properties of Trapezoids and Kites

- Trapezoid
- Quadrilateral with exactly one pair of parallel sides

- If the legs are \cong, then the trap is isosceles

7.5 Properties of Trapezoids and Kites

If isosceles trapezoid, then each pair of base angles is \cong.

If isosceles trapezoid, then diagonals are \cong.

- The converses are also true

7.5 Properties of Trapezoids and Kites

- Show that $A B C D$ is a trapezoid. Then decide whether it is isosceles.

- Try \#2

Slopes: $m_{B C}=\frac{2-3}{3-0}=\frac{1}{3} ; m_{A D}=\frac{-3-(-1)}{4-(-2)}=-\frac{1}{3}$
Since only 1 pair of sides is $\|$, it is a trapezoid
Check for isosceles: $A B=\sqrt{(0-(-2))^{2}+(3-(-1))^{2}}=\sqrt{20} ; C D=$
$\sqrt{(4-3)^{2}+(-3-2)^{2}}=\sqrt{26}$
Not isosceles

7.5 Properties of Trapezoids and Kites

- If the trapezoid is isosceles and $m \angle H E F=70^{\circ}$, find $m \angle E F G, m \angle F G H$, and $m \angle G H E$.

- Try \#6

Base angles are $\cong ; m \angle E F G=70^{\circ}$
Consecutive interior angles are supplementary; $m \angle F G H=m \angle G H E=110^{\circ}$

7.5 Properties of Trapezoids and Kites

- Midsegment of a Trapezoid
- Segment connecting the midpoints of each leg

Midsegment Theorem for Trapezoids
The midsegment of a trapezoid is parallel to the bases and its length is the average of the lengths of the bases.

$$
M N=\frac{1}{2}\left(b_{1}+b_{2}\right)
$$

7.5 Properties of Trapezoids and Kites

- In trapezoid $J K L M, \angle J$ and $\angle M$ are right angles, and $J K=9 \mathrm{~cm}$. The length of the midsegment $\overline{N P}$ of trapezoid $J K L M$ is 12 cm . Find $M L$.
- Try \#10

$$
\begin{gathered}
\text { midsegment }=\frac{1}{2}\left(b_{1}+b_{2}\right) \\
12=\frac{1}{2}(M L+9) \\
24=M L+9 \\
M L=15
\end{gathered}
$$

7.5 Properties of Trapezoids and Kites

- Kites
- Quadrilateral with 2 pairs of consecutive congruent si

If kite, then the diagonals are perpendicular.

If kite, then exactly one pair of opposite angles are congruent.

7.5 Properties of Trapezoids and Kites

\cdot Find $m \angle C$ in the kite shown.

- Try \#16

$$
\begin{gathered}
x^{\circ}+x^{\circ}+80^{\circ}+50^{\circ}=360^{\circ} \\
2 x^{\circ}+130^{\circ}=360^{\circ} \\
2 x^{\circ}=230^{\circ} \\
x=115^{\circ}
\end{gathered}
$$

7.5 Properties of Trapezoids and Kites

- Give the most specific name for the quadrilateral.

- Try \#22

Kite (\cong consecutive sides)

Trapezoid (exactly one pair of parallel sides, diagonals not \cong)
Quadrilateral (not enough information to be more specific)

