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9.1 The Pythagorean 
Theorem
After this lesson…

• I can list common Pythagorean triples.

• I can find missing side lengths of right triangles.

• I can classify a triangle as acute, right, or obtuse given its side lengths.
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9.1 The Pythagorean Theorem

• Find the value of x

• Try #2

Pythagorean Theorem

In a right triangle, a2 + b2 = c2 where a and b are the length of 
the legs and c is the length of the hypotenuse.

32 + 𝑥2 = 52

9 + 𝑥2 = 25
𝑥2 = 16

𝑥 = 4

62 + 42 = 𝑥2

36 + 16 = 𝑥2

52 = 𝑥2

𝑥 = 2 13
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9.1 The Pythagorean Theorem

• Pythagorean Triples
• A set of three positive integers that satisfy the Pythagorean 

Theorem
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9.1 The Pythagorean Theorem

• Tell whether a triangle with the given sides is a right triangle.

• 4, 4 3, 8

• Try #10

Converse of the Pythagorean Theorem

If a2 + b2 = c2 where a and b are the length of the short sides 
and c is the length of the longest side, then it is a right 
triangle.

42 + 4 3
2

= 82

16 + 16 3 = 64
16 + 48 = 64

64 = 64
Yes
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9.1 The Pythagorean Theorem

• Show that the segments with lengths 3, 4, and 6 can form a triangle

• Classify the triangle as acute, right or obtuse.

• Try #16

If c is the longest side and…
 c2 < a2 + b2 → acute triangle
 c2 = a2 + b2 → right triangle
 c2 > a2 + b2 → obtuse triangle

3 + 4 > 6
7 > 6

32 + 42 ? 62

9 + 16 ?  36
25 < 36

obtuse
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9.2 Special Right Triangles
After this lesson…

• I can find side lengths in 45°-45°-90° triangles.

• I can find side lengths in 30°-60°-90° triangles.

• I can use special right triangles to solve real-life problems.
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9.2 Special Right Triangles

Some triangles have special lengths of sides, thus in life you see these 
triangles often such as in construction.
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9.2 Special Right Triangles

• 45-45-90 • 30-60-90

1

1

2

45
°

45
°

3

21

30°

60°

If you have another 45-45-90 or 30°-60°-90° triangle, then use the fact that 
they are similar and use the proportional sides.



9.2 Special Right Triangles

• Find the value of x. Write your answer in simplest form.

• Try #2

𝑥

22
=

2

1
𝑥 = 22 2

𝑥

10 2
=

1

2
𝑥 2 = 10 2

𝑥 = 10
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9.2 Special Right Triangles

• Find the values of x and y. Write your answers in simplest form.

• Try #6

𝑥

30
=

3

2
2𝑥 = 30 3

𝑥 = 15 3

𝑦

30
=

1

2
2𝑦 = 30
𝑦 = 15
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9.3 Similar Right Triangles
After this lesson…

• I can explain the Right Triangle Similarity Theorem.

• I can find the geometric mean of two numbers.

• I can find missing dimensions in right triangles.
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9.3 Similar Right Triangles

• ΔCBD ~ ΔABC, ΔACD ~ ΔABC, ΔCBD ~ ΔACD

If the altitude is drawn to the hypotenuse of a right triangle, 
then the two triangles formed are similar to the original 
triangle and to each other.

Right Triangle Similarity Theorem
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9.3 Similar Right Triangles

• Identify the similar triangles.  Then find x.

• Try #4

E

FG

3

4

5
E

FG

H

3

4

x

5

FG

H

4

x

E

G

H

3
x

ΔEFG ~ ΔGFH ~ ΔEHG

𝐺𝐻

𝐸𝐺
=

𝐺𝐹

𝐸𝐹
𝑥

3
=

4

5

𝑥 =
12

5
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9.3 Similar Right Triangles

• Find the geometric mean of 8 and 10.

• Try #10

The geometric mean of two positive numbers a and b is the 

positive number that satisfies 
𝑎

𝑥
=

𝑥

𝑏
. So, 𝑥 = 𝑎𝑏

Geometric Mean

8 · 10 = 80 = 4 5 ≈ 8.9
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9.3 Similar Right Triangles

• 𝐶𝐷 = 𝐴𝐷 · 𝐷𝐵

If the altitude is drawn to the hypotenuse of a right triangle, 
then the altitude is the geometric mean of the two segments 
of the hypotenuse.

Geometric Mean (Altitude) Theorem
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9.3 Similar Right Triangles

• 𝐴𝐶 = 𝐴𝐵 · 𝐴𝐷

• 𝐵𝐶 = 𝐴𝐵 · 𝐷𝐵

If the altitude is drawn to the hypotenuse of a right triangle, 
then each leg is the geometric mean of the hypotenuse and 
the segment of the hypotenuse adjacent to that leg.

Geometric Mean (Leg) Theorem
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9.3 Similar Right Triangles

• Find the value of x or y.

• Try #18

𝑥

9
=

5

𝑥
𝑥2 = 45

𝑥 = 3 5 = 6.708

𝑦

5
=

8

𝑦
𝑦2 = 40

𝑦 = 2 10 = 6.325
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9.4 The Tangent Ratio
After this lesson…

• I can explain the tangent ratio.

• I can find tangent ratios.

• I can use tangent ratios to solve real-life problems.
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9.4 The Tangent Ratio

• Draw a large 30° angle.

• On one side, draw a perpendicular lines every 5 cm.

• Fill in the table

• Why are 
𝐵𝐶

𝐷𝐸
=

𝐴𝐶

𝐴𝐸
 and 

𝐵𝐶

𝐴𝐶
=

𝐷𝐸

𝐴𝐸
?

The triangles are similar by AA similarity
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9.4 The Tangent Ratio

• Tangent ratio

•tan 𝐴 =
opposite leg
adjacent leg
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9.4 The Tangent Ratio

• Find tan J and tan K.

• Try #2

tan 𝐽 =
24

32
=

3

4

tan 𝐾 =
32

24
=

4

3

tan 𝐽 =
8

15

tan 𝐾 =
15

8
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9.4 The Tangent Ratio

• Find the value of x.  Round to the nearest tenth.

• Try #6

tan 61° =
22

𝑥
𝑥 tan 61° = 22

𝑥 =
22

tan 61°
= 12.2

tan 56° =
𝑥

13
13 tan 56° = 𝑥 = 19.3
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9.5 The Sine and Cosine 
Ratios
After this lesson…

• I can explain the sine and cosine ratios.

• I can find sine and cosine ratios.

• I can use sine and cosine ratios to solve real-life problems.
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9.5 The Sine and Cosine Ratios

• sin 𝐴 =
opposite leg
hypotenuse

•cos 𝐴 =
adjacent leg
hypotenuse

• tan 𝐴 =
opposite leg
adjacent leg

S O H
C A H
T O A

SOH = Sine Opposite Hypotenuse
CAH = Cosine Adjacent Hypotenuse
TOA = Tangent Opposite Adjacent

26



9.5 The Sine and Cosine Ratios

• Find sin X, cos X, and tan X

• Try #2

sin 𝑋 =
8

17

cos 𝑋 =
15

17

tan 𝑋 =
8

15
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9.5 The Sine and Cosine Ratios

• Sine of an angle = cosine of the 
complement

• sin 𝐴 = cos 90° − 𝐴 = cos 𝐵

• cos 𝐴 = sin(90° − 𝐴) = sin 𝐵

• Write cos 68° in terms of sine.

• Try #8

cos 68° = sin 90° − 68° = sin 22°
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9.5 The Sine and Cosine Ratios

• Find the length of the dog run (x).

• Try #16

sin 35° =
11

𝑥
𝑥 ⋅ sin 35° = 11

𝑥 =
11

sin 35°
= 19.2 𝑓𝑡
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9.5 The Sine and Cosine Ratios

• Angle of Elevation and Depression
• Both are measured from the horizontal
• Since they are measured to ∥ lines, they are ≅
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9.5 The Sine and Cosine Ratios

• The angle of elevation of a plane as seen from the airport is 50°.  If the 
plane is 1000 ft away, how high is plane?

• Try #28

50° 

x 1000 
ft

sin 50° =
𝑥

1000
1000 ⋅ sin 50° = 𝑥

𝑥 = 766𝑓𝑡
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9.6 Solving Right Triangles
After this lesson…

• I can explain inverse trigonometric ratios.

• I can use inverse trigonometric ratios to approximate angle measures.

• I can solve right triangles.

• I can solve real-life problems by solving right triangles.
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9.6 Solving Right Triangles

• Solve a triangle means to find all the unknown angles and sides.
• Can be done for a right triangle if you know 

• 2 sides
• 1 side and 1 acute angle

• Use sin, cos, tan, Pythagorean Theorem, and Angle Sum Theorem
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9.6 Solving Right Triangles

• Inverse Trigonometric Ratios
• Used to find measures of angles when you know the sides.

• sin−1 𝑜𝑝𝑝

ℎ𝑦𝑝
= θ

• cos−1 𝑎𝑑𝑗

ℎ𝑦𝑝
= θ

• tan−1 𝑜𝑝𝑝

𝑎𝑑𝑗
= θ
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9.6 Solving Right Triangles

• Find 𝑚∠𝐷 to the nearest tenth if sin 𝐷 = 0.54

• Find 𝑚∠𝐶 to the nearest tenth.

• Try #6

𝐷 = sin−1 0.54 = 32.7

𝐶 = tan−1
20

15
= 53.1
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9.6 Solving Right Triangles

• Solve a right triangle that has a 12-inch leg and a 20-inch hypotenuse.

• Try #12

20 12 

A C

B

122 + 𝐴𝐶2 = 202

144 + 𝐴𝐶2 = 400
𝐴𝐶2 = 256

𝐴𝐶 = 16

sin 𝐴 =
12

20

𝐴 = sin−1
12

20
= 36.9°

cos 𝐵 =
12

20

𝐵 = cos−1
12

20
= 53.1°
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9.7A Law of Sines
After this lesson…

• I can find areas of triangles using formulas that involve sine.

• I can solve triangles using the Law of Sines.

37



9.7A Law of Sines

• Area of a Triangle

• 𝐴 =
1

2
𝑏ℎ

• sin 𝐴 =
ℎ

𝑐

• 𝑐 sin 𝐴 = ℎ

• 𝐴𝑟𝑒𝑎 =
1

2
𝑏𝑐 sin 𝐴

• 𝐴𝑟𝑒𝑎 =
1

2
𝑎𝑐 sin 𝐵

• 𝐴𝑟𝑒𝑎 =
1

2
𝑎𝑏 sin 𝐶
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9.7A Law of Sines

• Find the area of the triangle.

• Try #8

𝐴𝑟𝑒𝑎 =
1

2
𝑞𝑠 sin 𝑅

𝐴𝑟𝑒𝑎 =
1

2
15 12 sin 110° ≈ 84.6
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9.7A Law of Sines

• Tangent, Sine, and Cosine are only for right triangles.

• Law of Sines and Law of Cosines are for any triangle.

• Law of Sines

•
sin 𝐴

𝑎
=

sin 𝐵

𝑏
=

sin 𝐶

𝑐

• Used if you know 
• AAS, ASA, SSA

Only use two of the ratios at a time.
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9.7A Law of Sines

• Solve the triangle.

sin 𝑄

𝑞
=

sin 𝑅

𝑟
sin 70°

36
=

sin 𝑅

18
36 sin 𝑅 = 18 sin 70°

sin 𝑅 = 0.4698
𝑅 = sin−1 0.4698 = 28.0°

𝑃 = 180° − 70° − 28.0° = 82.0°

sin 𝑄

𝑞
=

sin 𝑃

𝑝
sin 70°

36
=

sin 82.0°

𝑝
𝑝 sin 70° = 36 sin 82.0°

𝑝 = 37.9
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9.7A Law of Sines

• A surveyor makes the measurements shown to determine the 
length of a walking bridge to be built across a pond in a city park. 
Find the length of the bridge.

• Try #14

𝐷 = 180° − 65° − 79° = 36°

sin 𝐷

𝑑
=

sin 𝐹

𝑓
sin 36°

45
=

sin 79°

𝑓
𝑓 sin 36° = 45 sin 79°

𝑓 = 75.2 𝑓𝑡

sin 𝐷

𝑑
=

sin 𝐸

𝑒
sin 36°

45
=

sin 65°

𝑒
𝑒 sin 36° = 45 sin 65°

𝑒 = 69.4 𝑓𝑡
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9.7B Law of Cosines
After this lesson…

• I can solve triangles using the Law of Cosines.
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9.7B Law of Cosines

• Law of Cosines
• 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴
• 𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝐵
• 𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝐶

• Use when you know 
• SSS, SAS
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9.7B Law of Cosines

• Solve the triangle.

𝑓2 = 𝑑2 + 𝑒2 − 2𝑑𝑒 cos 𝐹
𝑓2 = 92 + 122 − 2 ⋅ 9 ⋅ 12 ⋅ cos 46°

𝑓2 = 74.9538
𝑓 = 8.66 𝑖𝑛

𝑑2 = 𝑒2 + 𝑓2 − 2𝑒𝑓 cos 𝐷
92 = 122 + 8.662 − 2 12 8.66 cos 𝐷
81 = 144 + 74.9538 − 207.84 cos 𝐷

−137.9538 = −207.84 cos 𝐷
0.66375 = cos 𝐷

𝐷 = cos−1 0.66375 ≈ 48.4°

𝐸 = 180° − 46° − 48.4° = 85.6°
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9.7B Law of Cosines

• Solve the triangle.

• Try #22

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴
302 = 272 + 182 − 2 27 18 cos 𝐴

900 = 729 + 324 − 972 cos 𝐴
−153 = −972 cos 𝐴

0.1574 = cos 𝐴
𝐴 = cos−1 0.1574 ≈ 80.9°

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝐵
272 = 302 + 182 − 2 30 18 cos 𝐵

729 = 900 + 324 − 1080 cos 𝐵
−495 = −1080 cos 𝐵

0.4583 = cos 𝐵
𝐵 = cos−1 0.4583 ≈ 62.7°

𝐶 = 180° − 80.9° − 62.7° = 36.4°
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