Right Triangles and Trigonometry
 Geometry
 Chapter 9

- This Slideshow was developed to accompany the textbook
- Big Ideas Geometry
- By Larson and Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

9.1 The Pythagorean Theorem

After this lesson...

- I can list common Pythagorean triples.
- I can find missing side lengths of right triangles.
- I can classify a triangle as acute, right, or obtuse given its side lengths.

9.1 The Pythagorean Theorem

Pythagorean Theorem

In a right triangle, $\mathbf{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{2}$ where \mathbf{a} and \mathbf{b} are the length of the legs and \mathbf{c} is the length of the hypotenuse.

- Find the value of x

5

- Try \quad \#

$$
\begin{gathered}
3^{2}+x^{2}=5^{2} \\
9+x^{2}=25 \\
x^{2}=16 \\
x=4 \\
6^{2}+4^{2}=x^{2} \\
36+16=x^{2} \\
52=x^{2} \\
x=2 \sqrt{13}
\end{gathered}
$$

9.1 The Pythagorean Theorem

- Pythagorean Triples
- A set of three positive integers that satisfy the Pythagorean Theorem

$\mathbf{3 , 4}, \mathbf{5}$	$\mathbf{5}, \mathbf{1 2}, \mathbf{1 3}$	$\mathbf{8}, \mathbf{1 5}, \mathbf{1 7}$	$\mathbf{7}, \mathbf{2 4}, \mathbf{2 5}$
$6,8,10$	$10,24,26$	$16,30,34$	$14,48,50$
$9,12,15$	$15,36,39$	$24,45,51$	$21,72,75$
$30,40,50$	$50,120,130$	$80,150,170$	$70,240,250$
$3 x, 4 x, 5 x$	$5 x, 12 x, 13 x$	$8 x, 15 x, 17 x$	$7 x, 24 x, 25 x$

9.1 The Pythagorean Theorem

Converse of the Pythagorean Theorem

If $\mathbf{a}^{2}+\mathbf{b}^{2}=\mathbf{c}^{\mathbf{2}}$ where \mathbf{a} and \mathbf{b} are the length of the short sides and \mathbf{c} is the length of the longest side, then it is a right triangle.

- Tell whether a triangle with the given sides is a right triangle.
- $4,4 \sqrt{3}, 8$
- Try \#10

$$
\begin{gathered}
4^{2}+(4 \sqrt{3})^{2}=8^{2} \\
16+(16)(3)=64 \\
16+48=64 \\
64=64
\end{gathered}
$$

9.1 The Pythagorean Theorem

If c is the longest side and...

$$
\begin{aligned}
& \mathbf{c}^{2}<\mathbf{a}^{2}+\mathbf{b}^{2} \rightarrow \text { acute triangle } \\
& \mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2} \rightarrow \text { right triangle } \\
& \mathbf{c}^{2}>\mathbf{a}^{2}+\mathbf{b}^{2} \rightarrow \text { obtuse triangle }
\end{aligned}
$$

- Show that the segments with lengths 3,4 , and 6 can form a triangle
- Classify the triangle as acute, right or obtuse.
- Try \#16

$$
\begin{gathered}
3+4>6 \\
7>6 \\
\\
3^{2}+4^{2} \underline{?} 6^{2} \\
9+16 \underline{?} 36 \\
25<36
\end{gathered}
$$

obtuse

9.2 Special Right Triangles

After this lesson...

- I can find side lengths in $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.
- I can find side lengths in $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.
- I can use special right triangles to solve real-life problems.

9.2 Special Right Triangles

Some triangles have special lengths of sides, thus in life you see these triangles often such as in construction.

9.2 Special Right Triangles

- $45^{\circ}-45^{\circ}-90^{\circ}$

If you have another $45^{\circ}-45^{\circ}-90^{\circ}$ or $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, then use the fact that they are similar and use the proportional sides.

9.2 Special Right Triangles

- Find the value of x. Write your answer in simplest form.

- Try \#2

$$
\begin{aligned}
\frac{x}{22} & =\frac{\sqrt{2}}{1} \\
x= & 22 \sqrt{2} \\
\frac{x}{10 \sqrt{2}} & =\frac{1}{\sqrt{2}} \\
x \sqrt{2} & =10 \sqrt{2} \\
x & =10
\end{aligned}
$$

9.2 Special Right Triangles

- Find the values of x and y. Write your answers in simplest form.

- Try \#6

$$
\begin{gathered}
\frac{x}{30}=\frac{\sqrt{3}}{2} \\
2 x=30 \sqrt{3} \\
x=15 \sqrt{3} \\
\frac{y}{30}=\frac{1}{2} \\
2 y=30 \\
y=15
\end{gathered}
$$

9.3 Similar Right Triangles

After this lesson...

- I can explain the Right Triangle Similarity Theorem.
- I can find the geometric mean of two numbers.
- I can find missing dimensions in right triangles.

9.3 Similar Right Triangles

Right Triangle Similarity Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

- $\Delta \mathrm{CBD} \sim \Delta \mathrm{ABC}, \triangle \mathrm{ACD} \sim \Delta \mathrm{ABC}, \Delta \mathrm{CBD} \sim \Delta \mathrm{ACD}$

9.3 Similar Right Triangles

- Identify the similar triangles. Then find x.

- Try \#4
$\Delta \mathrm{EFG} \sim \Delta \mathrm{GFH} \sim \Delta \mathrm{EHG}$

$$
\begin{gathered}
\frac{G H}{E G}=\frac{G F}{E F} \\
\frac{x}{3}=\frac{4}{5} \\
x=\frac{12}{5}
\end{gathered}
$$

9.3 Similar Right Triangles

Geometric Mean

The geometric mean of two positive numbers a and b is the positive number that satisfies $\frac{a}{x}=\frac{x}{b}$. So, $x=\sqrt{a b}$

- Find the geometric mean of 8 and 10.
- Try \#10

$$
\sqrt{8 \cdot 10}=\sqrt{80}=4 \sqrt{5} \approx 8.9
$$

9.3 Similar Right Triangles

Geometric Mean (Altitude) Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then the altitude is the geometric mean of the two segments of the hypotenuse.

- $C D=\sqrt{A D \cdot D B}$

9.3 Similar Right Triangles

Geometric Mean (Leg) Theorem

If the altitude is drawn to the hypotenuse of a right triangle, then each leg is the geometric mean of the hypotenuse and the segment of the hypotenuse adjacent to that leg.

- $A C=\sqrt{A B \cdot A D}$
- $B C=\sqrt{A B \cdot D B}$

9.3 Similar Right Triangles

- Find the value of x or y.

- Try \#18

$$
\begin{gathered}
\frac{x}{9}=\frac{5}{x} \\
x^{2}=45 \\
x=3 \sqrt{5}=6.708 \\
\frac{y}{5}=\frac{8}{y} \\
y^{2}=40 \\
y=2 \sqrt{10}=6.325
\end{gathered}
$$

9.4 The Tangent Ratio

After this lesson...

- I can explain the tangent ratio.
- I can find tangent ratios.
- I can use tangent ratios to solve real-life problems.

9.4 The Tangent Ratio

- Draw a large 30° angle.
- On one side, draw a perpendicular lines every 5 cm .
- Fill in the table

Triangle	Adjacent leg	Opposite leg	Opposite leg Adjacent leg
$\triangle A B C$	5 cm	$?$	$?$
$\triangle A D E$	10 cm	$?$	$?$
$\triangle A F G$	15 cm	$?$	$?$

- Why are $\frac{B C}{D E}=\frac{A C}{A E}$ and $\frac{B C}{A C}=\frac{D E}{A E}$?

9.4 The Tangent Ratio

- Tangent ratio
$\cdot \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}$

9.4 The Tangent Ratio

- Find $\tan J$ and $\tan K$.

- Try \#2
$\tan J=\frac{24}{32}=\frac{3}{4}$
$\tan K=\frac{32}{24}=\frac{4}{3}$
$\tan J=\frac{8}{15}$
$\tan K=\frac{15}{8}$

9.4 The Tangent Ratio

- Find the value of x. Round to the nearest tenth.

- Try \#6

$$
\begin{gathered}
\tan 61^{\circ}=\frac{22}{x} \\
x \tan 61^{\circ}=22 \\
x=\frac{22}{\tan 61^{\circ}}=12.2 \\
\tan 56^{\circ}=\frac{x}{13} \\
13 \tan 56^{\circ}=x=19.3
\end{gathered}
$$

9.5 The Sine and Cosine Ratios

After this lesson...

- I can explain the sine and cosine ratios.
- I can find sine and cosine ratios.
- I can use sine and cosine ratios to solve real-life problems.

9.5 The Sine and Cosine Ratios

- $\sin A=\frac{\text { opposite leg }}{\text { hypotenuse }}$

S OH

- $\cos A=\frac{\text { adjacent leg }}{\text { hypotenuse }}$
$\cdot \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}$

SOH = Sine Opposite Hypotenuse
CAH = Cosine Adjacent Hypotenuse
TOA = Tangent Opposite Adjacent

9.5 The Sine and Cosine Ratios

- Find $\sin X, \cos X$, and $\tan X$

- Try \#2
$\sin X=\frac{8}{17}$
$\cos X=\frac{15}{17}$
$\tan X=\frac{8}{15}$

9.5 The Sine and Cosine Ratios

- Sine of an angle $=$ cosine of the complement
- $\sin A=\cos \left(90^{\circ}-A\right)=\cos B$
- $\cos A=\sin \left(90^{\circ}-A\right)=\sin B$
- Write $\cos 68^{\circ}$ in terms of sine.

- Try \#8

$$
\cos 68^{\circ}=\sin \left(90^{\circ}-68^{\circ}\right)=\sin 22^{\circ}
$$

9.5 The Sine and Cosine Ratios

- Find the length of the dog run (x).

- Try \#16

$$
\begin{gathered}
\sin 35^{\circ}=\frac{11}{x} \\
x \cdot \sin 35^{\circ}=11 \\
x=\frac{11}{\sin 35^{\circ}}=19.2 \mathrm{ft}
\end{gathered}
$$

9.5 The Sine and Cosine Ratios

- Angle of Elevation and Depression
- Both are measured from the horizontal
- Since they are measured to || lines, they are \cong

9.5 The Sine and Cosine Ratios

- The angle of elevation of a plane as seen from the airport is 50°. If the plane is 1000 ft away, how high is plane?

- Try \#28

$$
\begin{gathered}
\sin 50^{\circ}=\frac{x}{1000} \\
1000 \cdot \sin 50^{\circ}=x \\
x=766 f t
\end{gathered}
$$

9.6 Solving Right Triangles
 After this lesson...

- I can explain inverse trigonometric ratios.
- I can use inverse trigonometric ratios to approximate angle measures.
- I can solve right triangles.
- I can solve real-life problems by solving right triangles.

9.6 Solving Right Triangles

- Solve a triangle means to find all the unknown angles and sides.
- Can be done for a right triangle if you know
- 2 sides
- 1 side and 1 acute angle
- Use sin, cos, tan, Pythagorean Theorem, and Angle Sum Theorem

9.6 Solving Right Triangles

- Inverse Trigonometric Ratios
- Used to find measures of angles when you know the sides.
- $\sin ^{-1} \frac{o p p}{h y p}=\theta$
- $\cos ^{-1} \frac{a d j}{h y p}=\theta$
- $\tan ^{-1} \frac{o p p}{a d j}=\theta$

9.6 Solving Right Triangles

- Find $m \angle D$ to the nearest tenth if $\sin D=0.54$
- Find $m \angle C$ to the nearest tenth.
- Try \#6

$$
\begin{aligned}
D & =\sin ^{-1} 0.54=32.7 \\
C & =\tan ^{-1} \frac{20}{15}=53.1
\end{aligned}
$$

9.6 Solving Right Triangles

- Solve a right triangle that has a 12 -inch leg and a 20 -inch hypotenuse.

- Try \#12

$$
\begin{gathered}
12^{2}+A C^{2}=20^{2} \\
144+A C^{2}=400 \\
A C^{2}=256 \\
A C=16 \\
\sin A=\frac{12}{20} \\
A=\sin ^{-1} \frac{12}{20}=36.9^{\circ} \\
\cos B=\frac{12}{20} \\
B=\cos ^{-1} \frac{12}{20}=53.1^{\circ}
\end{gathered}
$$

9.7A Law of Sines

After this lesson...

- I can find areas of triangles using formulas that involve sine.
- I can solve triangles using the Law of Sines.

9.7A Law of Sines

- Area of a Triangle
- $A=\frac{1}{2} b h$
- $\sin A=\frac{h}{c}$
- $c \sin A=h$
- Area $=\frac{1}{2} b c \sin A$
- Area $=\frac{1}{2} a c \sin B$
- Area $=\frac{1}{2} a b \sin C$

9.7A Law of Sines

- Find the area of the triangle.

- Try \#8

$$
\begin{gathered}
\text { Area }=\frac{1}{2} q s \sin R \\
\text { Area }=\frac{1}{2}(15)(12) \sin 110^{\circ} \approx 84.6
\end{gathered}
$$

9.7A Law of Sines

- Tangent, Sine, and Cosine are only for right triangles.
- Law of Sines and Law of Cosines are for any triangle.
- Law of Sines
- $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

- Used if you know
- AAS, ASA, SSA

Only use two of the ratios at a time.

9.7A Law of Sines

- Solve the triangle.

$$
\begin{gathered}
\frac{\sin Q}{q}=\frac{\sin R}{r} \\
\frac{\sin 70^{\circ}}{36}=\frac{\sin R}{18} \\
36 \sin R=18 \sin 70^{\circ} \\
\sin R=0.4698 \\
R=\sin ^{-1} 0.4698=28.0^{\circ} \\
P=180^{\circ}-70^{\circ}-28.0^{\circ}=82.0^{\circ} \\
\frac{\sin Q}{q}=\frac{\sin P}{p} \\
\frac{\sin 70^{\circ}}{36}=\frac{\sin 82.0^{\circ}}{p} \\
p \sin 70^{\circ}=36 \sin 82.0^{\circ} \\
p=37.9
\end{gathered}
$$

9.7A Law of Sines

- A surveyor makes the measurements shown to determine the length of a walking bridge to be built across a pond in a city park. Find the length of the bridge.

- Try \#14

$$
\begin{gathered}
D=180^{\circ}-65^{\circ}-79^{\circ}=36^{\circ} \\
\frac{\sin D}{d}=\frac{\sin F}{f} \\
\frac{\sin 36^{\circ}}{45}=\frac{\sin 79^{\circ}}{f} \\
f \sin 36^{\circ}=45 \sin 79^{\circ} \\
f=75.2 \mathrm{ft} \\
\frac{\sin D}{d}=\frac{\sin E}{e} \\
\frac{\sin 36^{\circ}}{45}=\frac{\sin 65^{\circ}}{e} \\
e \sin 36^{\circ}=45 \sin 65^{\circ} \\
e=69.4 \mathrm{ft}
\end{gathered}
$$

9.7B Law of Cosines

After this lesson...

- I can solve triangles using the Law of Cosines.

9.7B Law of Cosines

- Law of Cosines
- $a^{2}=b^{2}+c^{2}-2 b c \cos A$
- $b^{2}=a^{2}+c^{2}-2 a c \cos B$
- $c^{2}=a^{2}+b^{2}-2 a b \cos C$

- Use when you know
- SSS, SAS

9.7B Law of Cosines

- Solve the triangle.

$$
\begin{gathered}
f^{2}=d^{2}+e^{2}-2 d e \cos F \\
f^{2}=9^{2}+12^{2}-2 \cdot 9 \cdot 12 \cdot \cos 46^{\circ} \\
f^{2}=74.9538 \\
f=8.66 \mathrm{in} \\
d^{2}=e^{2}+f^{2}-2 e f \cos D \\
9^{2}=12^{2}+8.66^{2}-2(12)(8.66) \cos D \\
81=144+74.9538-207.84 \cos D \\
-137.9538=-207.84 \cos D \\
0.66375=\cos D \\
D=\cos ^{-1} 0.66375 \approx 48.4^{\circ} \\
E=180^{\circ}-46^{\circ}-48.4^{\circ}=85.6^{\circ}
\end{gathered}
$$

9.7B Law of Cosines

- Solve the triangle.

- Try \#22

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
30^{2}=27^{2}+18^{2}-2(27)(18) \cos A \\
900=729+324-972 \cos A \\
-153=-972 \cos A \\
0.1574=\cos A \\
A=\cos ^{-1} 0.1574 \approx 80.9^{\circ} \\
b^{2}=a^{2}+c^{2}-2 a c \cos B \\
27^{2}=30^{2}+18^{2}-2(30)(18) \cos B \\
729=900+324-1080 \cos B \\
-495=-1080 \cos B \\
0.4583=\cos B \\
B=\cos ^{-1} 0.4583 \approx 62.7^{\circ} \\
C=180^{\circ}-80.9^{\circ}-62.7^{\circ}=36.4^{\circ}
\end{gathered}
$$

