Name the type of transformation shown.

1.

2.

3.

4. Figure $ABCD$ has vertices $A(1, 2)$, $B(4, -3)$, $C(5, 5)$, and $D(4, 7)$. Sketch $ABCD$ and draw its image after the translation $(x, y) \rightarrow (x + 5, y + 3)$.

5. Figure $ABCD$ has vertices $A(-2, 3)$, $B(1, 7)$, $C(6, 2)$, and $D(-1, -2)$. Sketch $ABCD$ and draw its image after the translation $(x, y) \rightarrow (x - 2, y - 4)$.

6. Figure $ABCD$ has vertices $A(3, -1)$, $B(6, -2)$, $C(5, 3)$, and $D(0, 4)$. Sketch $ABCD$ and draw its image after the translation $(x, y) \rightarrow (x - 3, y + 2)$.

7. Figure $ABCD$ has vertices $A(-1, 3)$, $B(4, -1)$, $C(6, 4)$, and $D(1, 5)$. Sketch $ABCD$ and draw its image after the translation $(x, y) \rightarrow (x + 4, y - 5)$.

Use coordinate notation to describe the translation.

8. 3 units to the right, 5 units down

9. 7 units to the left, 2 units down

10. 4 units to the left, 6 units up

11. 1 unit to the right, 8 units up
Use a reflection in the y-axis to draw the other half of the figure.

12. [Diagram of figure with reflection]

13. [Diagram of figure with reflection]

14. [Diagram of figure with reflection]

Use the coordinates to graph \overline{AB} and \overline{CD}. Tell whether \overline{CD} is a rotation of \overline{AB} about the origin. If so, give the angle and direction of rotation.

15. $A(-2, 5), B(-2, 0), C(0, 1), D(3, 1)$

16. $A(1, 4), B(4, 1), C(1, -4), D(4, -1)$

Complete the statement using the description of the translation. In the description, points $(2, 0)$ and $(3, 4)$ are two vertices of a triangle.

17. If $(2, 0)$ translates to $(4, 1)$, then $(3, 4)$ translates to ___.

18. If $(2, 0)$ translates to $(-2, -1)$, then $(3, 4)$ translates to ___.

A point on an image and the transformation are given. Find the corresponding point on the original figure.

19. Point on image: $(2, -4)$; transformation: $(x, y) \rightarrow (x - 4, y + 3)$

20. Point on image: $(-5, -7)$; transformation: $(x, y) \rightarrow (x, -y)$

21. **Verifying Congruence** Verify that $\triangle DEF$ is a congruence transformation of $\triangle ABC$. Explain your reasoning.