Use the diagram shown at the right. (Lesson 1.1)

1. What is another name for AE?
2. Name all rays with endpoint E.
3. What is another name for BC?
4. Name a ray opposite to EC.

In Exercises 5–7, let $m\angle A = (6x + 7)^\circ$ and $m\angle B = (3x + 20)^\circ$. (Lesson 1.5)

5. Find $m\angle A$ and $m\angle B$ if $\angle A$ and $\angle B$ are supplementary.
6. Find $m\angle A$ and $m\angle B$ if $\angle A$ and $\angle B$ are complementary.
7. Find $m\angle A$ and $m\angle B$ if $m\angle A + m\angle B = 360^\circ$.

Make a valid conclusion in the situation. (Lesson 2.3)

8. If it is a weekday, Trisha is at school. Today is Wednesday.
9. If two angles have the same measure, then they are congruent. $m\angle X = 77^\circ = m\angle Y$.
10. If a person is born in the United States, he or she is a U.S. citizen. Taylor was born in New Jersey.

What postulate or theorem justifies the statement? (Lesson 3.2)

11. $\angle 1 \cong \angle 8$
12. $\angle 3 \cong \angle 7$
13. $\angle 4 \cong \angle 5$
14. $m\angle 2 + m\angle 5 = 180^\circ$

In the diagram, $MN \perp NP$. Find the value of x. (Lesson 3.6)

15. $77^\circ (x - 12)^\circ$
16. $\angle (3x + 7)^\circ$
Tell which triangles you can show are congruent in order to prove the statement. What postulate or theorem would you use? (Lesson 4.6)

17. $\angle ABD \cong \angle CBD$

18. $FJ \cong JI$

19. Find the values of x and y. (Lesson 4.7)

20. Find the indicated length. (Lesson 5.2)

21. A point on an image and the translation are given. Find the corresponding point on the original figure. (Lesson 4.8)

22. Point on image: $(5, 2); \text{translation: } (x, y) \rightarrow (x - 4, -y)$

23. Point on image: $(-4, 1); \text{translation: } (x, y) \rightarrow (2 - x, y + 5)$

24. DE is a midsegment of $\triangle ABC$. Find the value of x. (Lesson 5.1)

25. BC

26. AC

27. AC