Physics Unit 1
Credits

• This Slideshow was developed to accompany the textbook
 • OpenStax Physics
 • Available for free at https://openstaxcollege.org/textbooks/college-physics
 • By OpenStax College and Rice University
 • 2013 edition

• Some examples and diagrams are taken from the OpenStax Physics and Cutnell & Johnson Physics 6th ed.

Slides created by
Richard Wright, Andrews Academy
rwright@andrews.edu
01-01 Introduction, Units, and Uncertainty

• Physics is the study of the rules (usually stated mathematically) by which the physical world operates.
• These rules describe “how” things happen. Laws of Nature
• These rules don’t say “why” things happen. Physicists are most interested in being able to predict what will happen. Many physicists think that because they can say how things happen, they have answered the why.
• Why does gravity pull things together? Newton described the effects over 100 years before anyone asked why gravity happened. Einstein suggested that mass bends space-time, but that is just a model.
• Physics deals with “how”. “Why” is philosophy.
I believe God created the laws of physics.
Since He made the laws, He can stop the effects of those laws when He chooses. This is called a miracle.
Many scientists think that because they can describe nature so well without using God that it proves God does not exist.
I believe being able to describe these intricate, interrelated laws shows the wisdom and might of God. It allows for miracles.
God’s laws of nature don’t change, neither do His other laws like, “Treat other how you would like to be treated” or the 10 Commandments. Following His laws makes everything work better.
The models, theories, and laws we devise sometimes imply the existence of objects or phenomena as yet unobserved. However, if experiment does not verify our predictions, then the theory or law is wrong, no matter how elegant or convenient it is.
01-01 Introduction, Units, and Uncertainty

• Scientific Method

• Can be used to solve many types of problems, not just science

 • Usually begins with observation and question about the phenomenon to be studied
 • Next preliminary research is done and hypothesis is developed
 • Then experiments are performed to test the hypothesis
 • Finally the tests are analyzed and a conclusion is drawn
Meter based on distance light travels in a vacuum in 1/299,792,458 of a second
Second based on time it takes for 9,192,631,770 vibrations of Cesium atoms
Mass based on mass of a platinum-iridium cylinder kept with the old meter standard at
the International Bureau of Weights and Measures near Paris
Metric Prefixes
- SI system based on powers of ten
- Memorize from T to p

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa</td>
<td>E</td>
<td>10^{18}</td>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{15}</td>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^{2}</td>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>decka</td>
<td>da</td>
<td>10^{1}</td>
<td>atto</td>
<td>a</td>
<td>10^{-18}</td>
</tr>
</tbody>
</table>
01-01 Introduction, Units, and Uncertainty

• Unit conversions
• Multiply by conversion factors so that the unwanted unit cancels out

• Convert 20 Gm to m

\[
\frac{20 \text{ Gm}}{1 \text{ Gm}} \left(\frac{1 \times 10^9 \text{ m}}{1 \text{ Gm}} \right) = 2 \times 10^{10} \text{ m}
\]
Convert 5 cg to kg

\[
\frac{5 \text{ cg}}{\text{1 cg}} \cdot \left(\frac{1 \times 10^{-2} \text{ g}}{1 \text{ cg}}\right) \cdot \left(\frac{1 \text{ kg}}{1 \times 10^3 \text{ g}}\right)
\]

\[
\frac{5 \times 10^{-2} \text{ kg}}{1 \times 10^3} = 5 \times 10^{-5} \text{ kg}
\]
01-01 Introduction, Units, and Uncertainty

- Convert 25 km/h to m/s
 \[
 \frac{25 \text{ km}}{1 \text{ h}} \cdot \left(\frac{1 \times 10^3 \text{ m}}{1 \text{ km}} \right) \cdot \left(\frac{1 \text{ h}}{60 \text{ min}} \right) \cdot \left(\frac{1 \text{ min}}{60 \text{ s}} \right)
 \]
 \[
 \frac{2.5 \times 10^4 \text{ m}}{3600 \text{ s}}
 \]
 \[
 6.94 \text{ m/s}
 \]
01-01 Introduction, Units, and Uncertainty

• Accuracy is how close a measurement is to the correct value for that measurement.
• Precision of a measurement system is refers to how close the agreement is between repeated measurements.
Accurate but not precise

Precise but not accurate
01-01 Introduction, Units, and Uncertainty

• The accuracy and precision of a measuring system leads to uncertainty.

• A device can repeatedly get the same measurement (precise), but always be wrong (not accurate).
01-01 Introduction, Units, and Uncertainty

- Significant Figures
 - Used to reflect uncertainty in measurements
- Each measuring device can only measure so accurately
- The last digit is always an estimate
01-01 Introduction, Units, and Uncertainty

- To find significant figures
 - Ignore placeholder zeros between the decimal point and the first nonzero digit
 - Count the number of other digits

- 0.000000602
 - 3 sig figs

- 1032000
 - 4 sig figs

- 1.023
 - 4 sig figs
01-01 Introduction, Units, and Uncertainty

• Rules for combining significant figures
 • Addition or subtraction
 • The answer can contain no more decimal places than the least precise measurement.
 • $1.02 + 2.0223 = 3.04$
 • Multiplication or division
 • The result should have the same number of significant figures as the quantity having the least significant figures entering into the calculation.
 • $1.002 \cdot 2.0223 = 2.026$

• I will accept 3 significant figures for all problems in future assignments.
01-01 Homework

• Strive for both precision and accuracy on these problems

• Read 2.1, 2.2
01-02 Displacement and Vectors

• Objectives
 • Use a ruler to measure in cm.

• Materials
 • Metric Ruler
 • 3x5 Card

• Background
 • The last digit on a measurement is always an estimate. When measuring using a ruler or meter stick, you can estimate between the smallest marks.

1. What unit are the smallest marks on the metric side of the ruler/meter stick?

2. If you are measuring in cm, how many decimal places can you measure including the estimate between the smallest marks?

3. If the smallest marks on the ruler were cm, then what unit would you be estimating?

4. Measure the shortest side of a 3x5 card.

5. Measure the longest side of a 3x5 card.

6. Measure a diagonal of a 3x5 card.

7. Use the Pythagorean Theorem with the short and long sides to calculate the diagonal to the correct number of significant figures.

8. Calculate the percent error using

\[\text{%error} = \frac{\text{experimental} - \text{theoretical}}{\text{theoretical}} \cdot 100\% \]

The percent error should be less than 5%.
01-02 Displacement and Vectors

- Kinematics studies motion without thinking about its cause

- Position
 - The location where something is relative to a coordinate system called a frame of reference

- Position is relative to a reference frame
 - Earth is the most common reference frame, but it could be something else
 - Most common coordinate system is x-y coordinate system
01-02 Displacement and Vectors

- Displacement
 - Change in position relative to a reference frame

- $\Delta x = x_f - x_0$

- Vector
 - Has direction and magnitude
 - Path does not matter
 - Only depends on final and initial position
$\Delta x = x - x_0$

$\Delta x = 7 - (-5) = 12$
01-02 Displacement and Vectors

• Distance
 • Total length of the path taken
• Scalar
 • Only has magnitude
You drive 20 km east, then turn around and drive 15 km west. What is your displacement?

- $\Delta x = x - x_0$
- $\Delta x = 5 \text{ km} - 0 \text{ km}$
- 5 km
- 5 km east of your starting point

What is your distance traveled?

- 20 km + 15 km
- 35 km
01-02 Homework

• Displace some lead on your paper

• Read 2.3, 2.8
01-03 Velocity and Graphs

- Complete the lab on your worksheet

- Vernier Graphical App
 - New Experiment
 - Manual Entry
 - Horizontal in X column
 - Vertical in Y column
 - Button in lower left
 - Apply Curve Fit
 - Choose the type of fit
01-03 Velocity and Graphs

- Change in time
 - $\Delta t = t_f - t_0$

- Often t_0 is 0, so $\Delta t = t_f = t$
01-03 Velocity and Graphs

- The slope of a position vs time graph is the velocity
- Velocity is rate of change of position
 \[\dot{v} = \frac{x - x_0}{t - t_0} \]
 \[x = \dot{v}t + x_0 \]
- If the graph is not a straight line, then use the slope of a tangent line drawn to that point.
01-03 Velocity and Graphs

• Velocity is a vector (has direction) \(v = \frac{\text{displacement}}{\text{time}} \)

• Speed is a scalar (no direction) \(v = \frac{\text{distance}}{\text{time}} \)

• Units of both are m/s
The graph at right shows the height of a ball thrown straight up vs time. Find the velocity of the ball at 2 seconds.

\[v = \frac{x-x_0}{t-t_0} \]

\[v = \frac{4.2 \text{ cm} - 1.7 \text{ cm}}{3 \text{ s} - 1 \text{ s}} \]

\[v = \frac{2.5 \text{ cm}}{2 \text{ s}} = 1.3 \frac{\text{ cm}}{\text{ s}} \]
(a) Find the slopes by drawing tangent lines, sketch graph based on these values
(b) d
(c) c,e,g,l
(d) a,b,f
01-03 Velocity and Graphs

• The spine-tailed swift is the fastest bird in powered flight. On one flight a particular bird flies 306 m east, then turns around and flies 406.5 m back west. This flight takes 15 s. What is the bird’s average velocity?

 • \[\overline{\nu} = \frac{\Delta x}{\Delta t} = \frac{306 \text{ m} - 406.5 \text{ m}}{15 \text{ s}} = -6.7 \text{ m/s} \]

 • 6.7 m/s west

• Average speed?

 • \[\nu = \frac{\text{distance}}{\text{time}} \]

 • \[\nu = \frac{(306 \text{ m} + 406.5 \text{ m})}{15 \text{ s}} = 47.5 \frac{\text{m}}{\text{s}} \]

• Which of these would we use to say how fast the bird is?

 • Average speed
01-03 Homework

• Time is important, work efficiently

• Read 2.4, 2.8
01-04 Acceleration and Graphs

- Complete the lab on your worksheet
01-04 Acceleration and Graphs

- Acceleration
 - Rate of change of velocity
 \[\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_0}{t_f - t_0} \]
 \[v = at + v_0 \]

- Vector
- Unit: \(m/s^2 \)

- If the acceleration is same direction as motion, then the object is increasing speed.
- If the acceleration is opposite direction as motion, then the object is decreasing speed.

(a) Speeding up
(b) Slowing
(c) Slowing
(d) Speeding up
01-04 Acceleration and Graphs

- Constant acceleration
 - The graph of position–time is parabolic
 - \(x = \frac{1}{2} at^2 + v_0 t + x_0 \) is quadratic
 - The graph of velocity–time is linear
 - \(v = at + v_0 \) is linear
01-04 Acceleration and Graphs

• A dropped object near the earth will accelerate downward at 9.8 m/s². (Use -9.8 m/s².) If the initial velocity is 1 m/s downward, what will be its velocity at the end of 3 s? Is it speeding up or slowing down?

 \[a = \frac{v_f - v_0}{t_f - t_0} \]

 \[-9.8 \frac{m}{s^2} = \frac{v_f - (-1 \frac{m}{s})}{3 s} \]

 \[-29.4 \frac{m}{s} = v_f + 1 \frac{m}{s} \]

 \[-30.4 \frac{m}{s} = v_f \]

 30.4 m/s downward
01-04 Homework

• Analyze this...

• Read 2.5-2.6
01-05 Equations for One-Dimensional Motion with Constant Acceleration

• Complete the lab on your worksheet

• We have already learned that

\[
\bar{v} = \frac{\Delta x}{\Delta t}
\]

• and

\[
\bar{v} = \frac{v_f + v_0}{2}
\]

• If the initial velocity is 0 and the acceleration is constant, then

\[
\bar{v} = \frac{v_f}{2}
\]

• Solve this for \(v_f\)
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- Assume $t_0 = 0$, so $\Delta t = t$ and acceleration is constant
- $\bar{v} = \frac{x-x_0}{t}$
- $x = \bar{v}t + x_0$ and $\bar{v} = \frac{v_0 + v}{2}$
- $x = \frac{1}{2} (v_0 + v)t + x_0$
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- $a = \frac{v - v_0}{t}$

- $v - v_0 = at$

- $v = at + v_0$
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- $v = at + v_0$
- $v_0 + v = at + 2v_0$
- $\frac{v_0 + v}{2} = \frac{1}{2} at + v_0$
- $\bar{v} = \frac{1}{2} at + v_0$
- $x = \bar{v}t + x_0$
- $x = \left(\frac{1}{2} at + v_0\right) t + x_0$
- $x = \frac{1}{2} at^2 + v_0 t + x_0$
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- $v = at + v_0$
- $t = \frac{v - v_0}{a}$
- $\frac{v}{2} = \frac{v_0 + v}{2}$
- $x = \bar{v}t + x_0$
- $x = \left(\frac{v_0 + v}{2}\right)\left(\frac{v - v_0}{a}\right) + x_0$
- $x - x_0 = \left(\frac{v^2 - v_0^2}{2a}\right)$
- $2a(x - x_0) = v^2 - v_0^2$
- $v^2 = v_0^2 + 2a(x - x_0)$
01-05 Equations for One-Dimensional Motion with Constant Acceleration

\[x = \bar{v}t + x_0 \]

\[\bar{v} = \frac{v_0 + v}{2} \]

\[v = at + v_0 \]

\[x = \frac{1}{2} at^2 + v_0 t + x_0 \]

\[v^2 = v_0^2 + 2a(x - x_0) \]
01-05 Equations for One-Dimensional Motion with Constant Acceleration

• Examine the situation to determine which physical principles are involved.
 • Maybe draw a picture
• Make a list of what is given or can be inferred from the problem.
• Identify exactly what needs to be determined in the problem.
• Find an equation or set of equations that can help you solve the problem.
• Substitute the knowns along with their units into the appropriate equation, and Solve
• Check the answer to see if it is reasonable: Does it make sense?
A plane starting from rest accelerates to 40 m/s in 10 s. How far did the plane travel during this time?

\[v = 40 \text{ m/s}, \quad t = 10 \text{ s}, \quad v_0 = 0, x_0 = 0, \quad x = ? \]

\[\bar{v} = \frac{v_0 + v}{2} \quad \rightarrow \quad \bar{v} = \frac{0 + 40 \text{ m}}{2} = 20 \text{ m/s} \]

\[x = \bar{v}t + x_0 \]

\[x = \left(20 \text{ m/s}\right)(10 \text{ s}) + 0 \]

\[x = 200 \text{ m} \]
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- To avoid an accident, a car decelerates at 0.50 m/s\(^2\) for 3.0 s and covers 15 m of road. What was the car’s initial velocity?
- \(a = -0.5 \text{ m/s}^2, t = 3 \text{ s}, x = 15 \text{ m}, x_0 = 0, v_0 = ?\)
- \(x = \frac{1}{2}at^2 + v_0 t + x_0\)
- \(15 \text{ m} = \frac{1}{2}\left(-0.5 \frac{\text{m}}{\text{s}^2}\right) (3 \text{ s})^2 + v_0 (3 \text{ s}) + 0\)
- \(15 \text{ m} = -2.25 \text{ m} + v_0 (3 \text{ s})\)
- \(17.25 \text{ m} = v_0 (3 \text{ s})\)
- \(v_0 = 5.75 \text{ m/s}\)
A cheetah is walking at 1.0 m/s when it sees a zebra 25 m away. What acceleration would be required to reach 20.0 m/s in that distance?

\[v = 20.0 \frac{m}{s}, v_0 = 1.0 \frac{m}{s}, x = 25 \text{ m}, x_0 = 0, a = ? \]

\[v^2 = v_0^2 + 2a(x - x_0) \]

\[(20 \frac{m}{s})^2 = (1.0 \frac{m}{s})^2 + 2a(25 \text{ m} - 0) \]

\[400 \frac{m^2}{s^2} = 1 \frac{m^2}{s^2} + 50ma \]

\[399 \frac{m^2}{s^2} = 50ma \]

\[a = 7.98 \frac{m}{s^2} \]
01-05 Equations for One-Dimensional Motion with Constant Acceleration

- The left ventricle of the heart accelerates blood from rest to a velocity of +26 cm/s. (a) If the displacement of the blood during the acceleration is +2.0 cm, determine its acceleration (in cm/s^2). (b) How much time does blood take to reach its final velocity?

 - \(v_0 = 0 \, \text{cm/s} \), \(v = 26 \, \text{cm/s} \), \(\Delta x = 2 \, \text{cm}, a =? \)
 - \(v^2 = v_0^2 + 2a(x - x_0) \)
 - \(a = 169 \, \text{cm/s}^2 \)

\[v_0 = 0 \, \text{cm/s}, v = 26 \, \text{cm/s}, \Delta x = 2 \, \text{cm}, t =? \]
\[x = \bar{v}t + x_0; \bar{v} = \frac{v_0 + v}{2} \]
\[t = 0.15 \, s \]

a) \(v^2 = v_0^2 + 2a(x - x_0) \)

\[
\left(26 \, \text{cm/s} \right)^2 = \left(0 \, \text{m/s} \right)^2 + 2a(2 \, \text{cm})
\]

\[
676 \, \text{cm}^2 = 4a \, \text{cm}
\]

\[
a = 169 \, \text{cm/s}^2
\]

b) \(x = x_0 + \bar{v}t; \bar{v} = \frac{v_0 + v}{2} \)

\[
\bar{v} = \frac{0 \, \text{cm/s} + 26 \, \text{cm/s}}{2} = 13 \, \text{cm/s}
\]

\[
x = \bar{v}t + x_0
\]

\[
2 \, \text{cm} = \left(13 \, \text{cm/s} \right) t
\]

\[
t = 0.15 \, s
\]
01-05 homework

• Practice problem solving by solving problems

• Read 2.7
01-06 Falling Objects

• Complete the lab on your worksheet

• We have already learned that
 \[\bar{v} = \frac{v_f + v_0}{2} \]

• If the initial velocity is 0 and the acceleration is constant, then
 \[v_f = 2\bar{v} \]

• Also
 \[a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t} \]

1. Use \(\bar{v} = \frac{\Delta x}{\Delta t} \) to find the average velocity.
2. Find the final speed of the marble.
3. So calculate the acceleration of the marble.
01-06 Falling Objects

• Free fall is when an object is moving only under the influence of gravity
• In a vacuum all objects fall at same acceleration
• \(g = 9.80 \frac{m}{s^2} \) down
• Any object thrown up, down, or dropped has this acceleration
01-06 Falling Objects

- Do feather falling demo
- Real life
 - Air resistance
- Use the one-dimensional equations of motion
01-06 Falling Objects

- You drop a coin from the top of a hundred story building (1000 m). If you ignore air resistance, how fast will it be falling right before it hits the ground?

- \(v_0 = 0, v = ?, a = -9.80 \frac{m}{s^2}, x_0 = 1000 \text{ m}, x = 0 \text{ m} \)
- \(v^2 = v_0^2 + 2a(x - x_0) \)
- \(v^2 = 0 + 2(-9.80 \text{ m/s}^2)(0 - 1000 \text{ m}) \)
- \(v^2 = 19600 \text{ m}^2/\text{s}^2 \)
- \(v = -140 \text{ m/s} \)

When solving and taking square root, then use \(\pm \) sign. Took negative here because it was going down.
01-06 Falling Objects

• How long does it take to hit the ground?
• \(x = \frac{1}{2} at^2 + v_0 t + x_0 \)
• \(0 \, m = \frac{1}{2} \left(-9.80 \, \frac{m}{s^2} \right) t^2 + 0(t) + 1000 \, m \)
• \(-1000 \, m = -4.90 \, \frac{m}{s^2} t^2 \)
• \(204.1 \, s^2 = t^2 \)
• \(14.3 \, s = t \)
01-06 Falling Objects

• A baseball is hit straight up into the air. If the initial velocity was 20 m/s, how high will the ball go?

• \(v_0 = 20 \frac{m}{s}, a = -9.80 \frac{m}{s^2}, v \text{ (at top)} = 0, \ x = ?, x_0 = 0 \)

• \(v^2 = v_0^2 + 2a(x - x_0) \)

• \(0 = (20 \frac{m}{s})^2 + 2(-9.80 \frac{m}{s^2})(x - 0) \)

• \(-400 \frac{m^2}{s^2} = -19.6 \frac{m}{s^2} x \)

• \(x = 20.4 \text{ m} \)
01-06 Falling Objects

• How long will it be until the catcher catches the ball at the same height it was hit?
• \(v_0 = 20 \frac{m}{s}, a = -9.80 \frac{m}{s^2}, t = ?, x = 0, x_0 = 0 \)
• \(x = \frac{1}{2} at^2 + v_0 t + x_0 \)
• \(0 m = \frac{1}{2} \left(-9.80 \frac{m}{s^2}\right) t^2 + \left(20 \frac{m}{s}\right) t + 0 m \)
• \(0 = t \left(-4.90 \frac{m}{s^2} t + 20 \frac{m}{s}\right) \)
• \(t = 0 \) s or \(-4.90 \frac{m}{s^2} t + 20 \frac{m}{s} = 0 \)
• \(-4.90 \frac{m}{s^2} t = -20 \frac{m}{s} \)
• \(t = 4.08 \) s
01-06 Falling Objects

- How fast is it going when catcher catches it?
 - \(v_0 = 20 \frac{m}{s}, a = -9.80 \frac{m}{s^2}, t = ?, x = 0, x_0 = 0 \)
 - \(v^2 = v_0^2 + 2a(x - x_0) \)
 - \(v^2 = \left(20 \frac{m}{s} \right)^2 + 2 \left(-9.80 \frac{m}{s^2} \right) (0 \ m - 0 \ m) \)
 - \(v^2 = \left(20 \frac{m}{s} \right)^2 \)
 - \(v = \pm 20 \ m/s \) so \(v = -20 \ m/s \)

It’s going down.
01-06 Homework

• “I’m falling for you...”

• Read 3.1-3.3
Vectors

- Vectors are measurements with magnitude and direction
 - They are represented by arrows
 - The length of the arrow is the magnitude
 - The direction of the arrow is the direction
01-07 Two-Dimensional Vectors

- Vectors can be represented in component form
 - Make a right triangle using the vector as the hypotenuse
 - Use sine and cosine to find the horizontal (x) component and the vertical (y) component
 - Assign negative signs to any component going down or left

\[
\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}
\]
\[
\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}
\]
\[
\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}
\]
01-07 Two-Dimensional Vectors

- A football player kicks a ball at 15 m/s at 30° above the ground. Find the horizontal and vertical components of this velocity.

- Horizontal: $v_x = 15 \frac{m}{s} \cos(30°) = 13.0 \frac{m}{s}$
- Vertical: $v_y = 15 \frac{m}{s} \sin(30°) = 7.5 \frac{m}{s}$
Scalar Multiplication

- Multiplying a vector by a single number
- Draw the vector that many times in a line
- Or multiply the components by that number
- A negative vector means multiply by -1, so it goes in the opposite direction
Vector Addition - Graphical Method

- Draw the first vector.
- Draw the second vector where the first one ends (tip-to-tail).
- Draw the resultant vector from where the first vector begins to where the second vector ends.
- Measure the resultant's length and direction.
01-07 Two-Dimensional Vectors

- Add the following vectors graphically. $A = 2\sqrt{2}$ at 45° N of E, $B = 2\sqrt{2}$ at 45° W of N.
01-07 Two-Dimensional Vectors

Vector Addition – Component Method

- Vectors can be described by its components to show how far it goes in the x and y directions.
- To add vectors, you simply add the x-component and y-components to get total (resultant) x and y components.

1. Find the components for all the vectors to be added
2. Add all the x-components
3. Add all the y-components
4. Use the Pythagorean Theorem to find the magnitude of the resultant
5. Use \tan^{-1} to find the direction (the direction is always found at the tail-end of the resultant)

Note: Drawing pictures and triangles helps immensely.
01-07 Two-Dimensional Vectors

Add the follow vectors.
\(C = 15 \text{ m} \) at 25° N of E;
\(D = 20 \text{ m} \) at 60° S of E

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(15 \text{ m} \cos 25°)</td>
<td>(15 \text{ m} \sin 25°)</td>
</tr>
<tr>
<td></td>
<td>= 13.6 m</td>
<td>= 6.34 m</td>
</tr>
<tr>
<td>D</td>
<td>(20 \text{ m} \cos 60°)</td>
<td>(-20 \text{ m} \sin 60°)</td>
</tr>
<tr>
<td></td>
<td>= 10 m</td>
<td>= -17.32 m</td>
</tr>
<tr>
<td>R</td>
<td>23.6 m</td>
<td>-10.98 m</td>
</tr>
</tbody>
</table>

\[
R = \sqrt{(23.6 \text{ m})^2 + (-10.98 \text{ m})^2} = 26.0 \text{ m}
\]

\[
\theta = \tan^{-1} \frac{10.98 \text{ m}}{23.6 \text{ m}} = 25.0° \text{ S of E}
\]
A jogger runs 145 m in a direction 20.0° east of north and then 105 m in a direction 35.0° south of east. Determine the magnitude and direction of jogger's position from her starting point.

\[R = \sqrt{(135.6 \text{ m})^2 + (76.1 \text{ m})^2} = 155.5 \text{ m} \]

\[\theta = \tan^{-1} \left(\frac{76.1 \text{ m}}{135.6 \text{ m}} \right) = 29.3^\circ \text{ N of E} \]
01-07 Homework

• Let’s add some arrows

• Read 3.4
01-08 Projectile Motion

• Complete the lab on your worksheet.

• Use a pushpin to attach one end of the ruler into the corkboard so the end hangs over the corkboard. The ruler should be able to pivot on the pushpin.

• Place one washer on the ruler so that it hangs over the edge of the corkboard. The other washer should be placed near the edge of the corkboard.

Note at highest point, $v_y = 0$
Note at highest point, $v_y = 0$
01-08 Projectile Motion

• If the starting and ending heights are the same, the distance the object goes can be found with the range equation

\[r = \frac{v_0^2 \sin 2\theta}{g} \]
01-08 Projectile Motion

• A meatball with $v = 5.0 \text{ m/s}$ rolls off a 1.0 m high table. How long does it take to hit the floor?

• y-motion only
 • $v_{0y} = 0 \frac{m}{s}$, $y_0 = 1.0 \text{ m}$,

 $y = 0 \text{ m, } a_y = -9.8 \frac{m}{s^2}, \quad t = ?$

 • $y = \frac{1}{2} a_y t^2 + v_{0y} t + y_0$

• $0 \ m = \frac{1}{2} \left(-9.8 \frac{m}{s^2} \right) t^2 + 0 \frac{m}{s} t + 1.0 \ m$

• $-1.0 \ m = -4.9 \frac{m}{s^2} t^2$

• $0.20 \ s^2 = t^2$

• $0.45 \ s = t$
01-08 Projectile Motion

- What was the velocity when it hit?
- Both x and y motion
 - \(x: v_{0x} = 5.0 \frac{m}{s}, t = 0.45 \text{ s} \)
 - \(y: v_{0y} = 0 \frac{m}{s}, y_0 = 1.0 \text{ m}, y = 0 \text{ m}, a_y = -9.8 \frac{m}{s^2}, t = 0.45 \text{ s} \)

\[
v_R = \sqrt{(5.0 \frac{m}{s})^2 + (-4.4 \frac{m}{s})^2} = 6.7 \frac{m}{s}
\]

\[
\theta = \tan^{-1}\left(-\frac{4.4 \frac{m}{s}}{5.0 \frac{m}{s}}\right) = -42^\circ
\]

- \(x \)-direction
 - \(v_x = 5.0 \frac{m}{s} \)
- \(y \)-direction
 - \(v_y = a_y t + v_{0y} \)
 - \(v_y = -9.8 \frac{m}{s^2} (0.45 \text{ s}) + 0 \frac{m}{s} \)
 - \(v_y = -4.4 \frac{m}{s} \)

6.7 \(\frac{m}{s} \) at 42\(^\circ\) below horizontal

X-velocity doesn’t change since no acceleration in x
A truck \((v = 11.2 \text{ m/s})\) turned a corner too sharp and lost part of the load. A falling box will break if it hits the ground with a velocity greater than 15 m/s. The height of the truck bed is 1.5 m. Will the box break?

- **x**: \(v_{0x} = 11.2 \frac{m}{s}\), \(v_x = 11.2 \frac{m}{s}\)
- **y**: \(v_{0y} = 0 \frac{m}{s}\), \(y_0 = 1.5 \text{ m}\), \(y = 0 \text{ m}\), \(a_y = -9.8 \frac{m}{s^2}\), \(v_y = ?\)

y-direction:

- \(v_y^2 = v_{0y}^2 + 2a_y(y - y_0)\)
- \(v_y^2 = \left(0 \frac{m}{s}\right)^2 + 2 \left(-9.8 \frac{m}{s^2}\right)(0 - 1.5 \text{ m})\)
- \(v_y^2 = 29.4 \frac{m^2}{s^2}\)
- \(v_y = -5.42 \text{ m/s}\)
- \(v_R = \sqrt{\left(11.2 \frac{m}{s}\right)^2 + \left(-5.42 \frac{m}{s}\right)^2}\)
- \(v_R = 12.4 \text{ m/s}\) The box doesn’t break
01-08 Projectile Motion

• While driving down a road a bad guy shoots a bullet straight up into the air. If there was no air resistance where would the bullet land – in front, behind, or on him?

• If air resistance present, bullet slows and lands behind.
• No air resistance the v_x doesn’t change and bullet lands on him.
Hit at the same time since they fall down the same distance and have the same initial y-velocity.
Watch MythBusters bullet drop video
A batter hits a ball at 35° with a velocity of 32 m/s. How high did the ball go?

- **x-direction:**
 - $v_{0x} = 32 \frac{m}{s} \cos 35^\circ = 26.2 \frac{m}{s}$

- **y-direction:**
 - $v_{0y} = 32 \frac{m}{s} \sin 35^\circ = 18.4 \frac{m}{s}$
 - $a_y = -9.8 \frac{m}{s^2}$, $y_0 = 0 \text{ m}$, $y = ?$
 - $v_y = 0 \frac{m}{s}$
 - $y = 17 \text{ m}$
01-08 Projectile Motion

• How long was the ball in the air?
 • \(x: v_{0x} = 32 \frac{m}{s} \cos 35^\circ = 26.2 \frac{m}{s} \)
 • \(y: y_0 = 32 \frac{m}{s} \sin 35^\circ = 18.4 \frac{m}{s}, \)
 \(a_y = -9.8 \frac{m}{s^2}, y_0 = 0 \text{ m}, y = 0 \text{ m}, \)
 \(t = ? \)

• \(y\)-direction:
 • \(y = \frac{1}{2} a_y t^2 + v_{0y} t + y_0 \)
 • \(0 = \frac{1}{2} (-9.8 \frac{m}{s^2}) t^2 + (18.4 \frac{m}{s}) t + 0 \)
 • \(0 = t \left(-4.9 \frac{m}{s^2} t + 18.4 \frac{m}{s}\right) \)
 • \(t = 0 \text{ or } t = 3.8 \text{ s} \)
01-08 Projectile Motion

- How far did the ball go?
 \[v_{0x} = 32 \, \text{m/s} \cos 35^\circ = 26.2 \, \text{m/s}, \]
 \[t = 3.8 \, \text{s}, x = ? \]

- x-direction:
 \[x = x_0 + v_{0x} t \]
 \[x = 0 \, \text{m} + 26.2 \, \text{m/s} (3.8 \, \text{s}) \]
 \[x = 98 \, \text{m} \]

Or use the range equation

\[R = \frac{v_0^2 \sin 2\theta}{g} \]

Where \(g \) is positive, \(\theta \) is the launch angle, and \(y = y_0 \)
01-08 Homework

- Project your answers onto your paper.
01-08b Projectile Motion Lab

- **IMPORTANT!** *The marble must never leave the desk when taking data.*

- Make a gentle ramp using your ruler and a book.
- Roll the marble down the ramp several times to determine the average speed it will have when it rolls off the desk. (We did this in a previous lab.)
- Take measurements to *calculate* the time until the marble hits the floor.
- Using the average speed and time of free fall, *calculate* the landing spot for your marble from directly below the edge of your desk.

- Place the target at the calculated location.
- Call over the teacher.
- When the teacher is watching, roll the marble down the ramp and see where it lands. The target gives your grade.
 Grade = ________________