ANALYTICAL GEOMETRY IN THREE DIMENSIONS

PRECALCULUS
CHAPTER 11
This Slideshow was developed to accompany the textbook

- Precalculus with Limits
- By Larson, R., Hostetler, R.
- 2007 Houghton Mifflin Company

Some examples and diagrams are taken from the textbook.
11.1 3-D COORDINATE SYSTEM

PRECALCULUS
• This Slideshow was developed to accompany the textbook
 • Precalculus with Limits
 • By Larson, R., Hostetler, R.
 • 2007 Houghton Mifflin Company
• Some examples and diagrams are taken from the textbook.
11.1 3-D COORDINATE SYSTEM

• Points in 3 dimensions
 • \((x, y, z)\)
 • \(x\) comes out/into of paper
 • \(y\) is left/right
 • \(z\) is up/down

• Graph by moving out the \(x\), over the \(y\), then up the \(z\).
 • Graph A\((5, 6, 3)\)
 • Graph B\((-2, -4, 0)\)
11.1 3-D COORDINATE SYSTEM

• Distance Formula
 • In 2-D:
 • \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
 • In 3-D: (just add the \(z \))
 • \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \)
11.1 3-D COORDINATE SYSTEM

- Equation of Circle (2-D)
 \[(x - h)^2 + (y - k)^2 = r^2\]
- Equation of Sphere (3-D) (just add z)
 \[(x - h)^2 + (y - k)^2 + (z - j)^2 = r^2\]
- Center is \((h, j, k)\), \(r = \) radius
- Graph by plotting the center and moving each direction the radius
- Graph
 \[(x - 2)^2 + (y + 1)^2 + (z + 1)^2 = 16\]
- Center \((2, -1, -1)\)
- \(r^2 = 16\) so \(r = 4\)
11.1 3-D COORDINATE SYSTEM

• Trace (like intercepts for a sphere)
 • Draw the xy trace for
 $(x - 2)^2 + (y + 1)^2 + (z + 1)^2 = 16$
 • Since xy trace, let $z = 0$
 $(x - 2)^2 + (y + 1)^2 + (1)^2 = 16$
 $(x - 2)^2 + (y + 1)^2 = 15$
 • Center (2, -1)
 • $r = \sqrt{15} \approx 3.9$
 • Looks funny because a perspective drawing
11.2 VECTORS IN SPACE

PRECALCULUS
• This Slideshow was developed to accompany the textbook
 • Precalculus with Limits
 • By Larson, R., Hostetler, R.
 • 2007 Houghton Mifflin Company
• Some examples and diagrams are taken from the textbook.
11.2 VECTORS IN SPACE

- Vectors in 2-D
 - \(\vec{v} = \langle v_1, v_2 \rangle \)

- Vectors in 3-D (just add \(z \))
 - \(\vec{v} = \langle v_1, v_2, v_3 \rangle \)

- To find a vector from the initial point \((p_1, p_2, p_3) \) to the terminal point \((q_1, q_2, q_3) \)
 - \(\vec{v} = \langle q_1 - p_1, q_2 - p_2, q_3 - p_3 \rangle \)

- If \(\vec{v} = \langle v_1, v_2, v_3 \rangle \) and \(\vec{u} = \langle u_1, u_2, u_3 \rangle \),
 - Addition
 - Add corresponding elements
 - \(\vec{v} + \vec{u} = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle \)
 - Scalar multiplication
 - Distribute
 - \(c\vec{v} = \langle cv_1, cv_2, cv_3 \rangle \)
 - Dot Product
 - \(\vec{v} \cdot \vec{u} = v_1u_1 + v_2u_2 + v_3u_3 \)
 - Magnitude
 - \(||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2} \)
 - Unit vector in the direction of \(\vec{v} \)
 - \(\frac{\vec{v}}{||\vec{v}||} \)
11.2 VECTORS IN SPACE

- Angle between vectors
 - $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$

- If $\theta = 90^\circ$ (and $\mathbf{u} \cdot \mathbf{v} = 0$)
 - Then vectors are orthogonal

- If $\mathbf{u} = c\mathbf{v}$
 - Then vectors are parallel
11.2 VECTORS IN SPACE

• Let \(\vec{m} = \langle 1, 0, 3 \rangle \) and \(\vec{n} = \langle -2, 1, -4 \rangle \)
• Find \(||\vec{m}|| \)
 \[||\vec{m}|| = \sqrt{m_1^2 + m_2^2 + m_3^2} \]
 \[= \sqrt{1^2 + 0^2 + 3^2} \]
 \[= \sqrt{10} \]

• Find unit vector in direction of \(\vec{m} \)
 \[\frac{\vec{m}}{||\vec{m}||} = \frac{\langle 1,0,3 \rangle}{\sqrt{10}} \]
 \[= \langle \frac{1}{\sqrt{10}}, 0, \frac{3}{\sqrt{10}} \rangle \]

• Find \(\vec{m} + 2\vec{n} \)
 \[\langle 1, 0, 3 \rangle + 2\langle -2, 1, -4 \rangle \]
 \[= \langle 1, 0, 3 \rangle + \langle -4, 2, -8 \rangle \]
 \[= \langle -3, 2, -5 \rangle \]
11.2 VECTORS IN SPACE

• Let \(\vec{m} = \langle 1, 0, 3 \rangle \) and \(\vec{n} = \langle -2, 1, -4 \rangle \)

• Find \(\vec{m} \cdot \vec{n} \)
 • \(\langle 1, 0, 3 \rangle \cdot \langle -2, 1, -4 \rangle \)
 • \(1(-2) + 0(1) + 3(-4) \)
 • -14

• Find the angle between \(\vec{m} \) and \(\vec{n} \)
 • \(\vec{m} \cdot \vec{n} = ||\vec{m}|| ||\vec{n}|| \cos \theta \)
 • \(-14 = \sqrt{1^2 + 0^2 + 3^2} \sqrt{(-2)^2 + 1^2 + (-4)^2} \cos \theta \)
 • \(-14 = \sqrt{10} \sqrt{21} \cos \theta \)
 • \(\frac{-14}{\sqrt{10} \sqrt{21}} = \cos \theta \)
 • \(\theta \approx 165.0^\circ \)
11.2 VECTORS IN SPACE

• Are \(\vec{p} = \langle 1, 5, -2 \rangle \) and \(\vec{q} = \left\langle -\frac{1}{5}, -1, \frac{2}{5} \right\rangle \) parallel, orthogonal, or neither?

• Orthogonal if \(\vec{p} \cdot \vec{q} = 0 \)

• \(\langle 1, 5, -2 \rangle \cdot \left\langle -\frac{1}{5}, -1, \frac{2}{5} \right\rangle \)

• \(1 \left(-\frac{1}{5} \right) + 5(-1) + (-2) \left(\frac{2}{5} \right) \)

• \(-\frac{1}{5} - 5 - \frac{4}{5} = -6 \)

• Not 0, so not orthogonal

• Parallel if \(\vec{p} = c \vec{q} \)

• \(\langle 1, 5, -2 \rangle = c \left\langle -\frac{1}{5}, -1, \frac{2}{5} \right\rangle \)

• Check \(x \)

 • \(1 = c \left(-\frac{1}{5} \right) \rightarrow c = -5 \)

• Check \(y \)

 • \(5 = c(-1) \rightarrow c = -5 \)

• Check \(z \)

 • \(-2 = c \left(\frac{2}{5} \right) \rightarrow c = -5 \)

• \(c \) is always the same, so they are parallel
11.2 VECTORS IN SPACE

• Are \(P(1, -1, 3) \), \(Q(0, 4, -2) \), and \(R(6, 13, -5) \) collinear?

• Find \(\overrightarrow{PQ} \) and \(\overrightarrow{QR} \). If they are parallel, then they go in same direction.

• Since they would share a point, then they would be the same line.

\[
\overrightarrow{PQ} = \langle 0 - 1, 4 - (-1), -2 - 3 \rangle = \langle -1, 5, -5 \rangle
\]

\[
\overrightarrow{QR} = \langle 6 - 0, 13 - 4, -5 - (-2) \rangle = \langle 6, 9, -3 \rangle
\]

• These are not parallel because \(\overrightarrow{PQ} \neq c\overrightarrow{QR} \)

• They are not going same direction, so not collinear
11.3 CROSS PRODUCTS

PRECALCULUS
This Slideshow was developed to accompany the textbook

- *Precalculus with Limits*
- *By Larson, R., Hostetler, R.*
- *2007 Houghton Mifflin Company*

Some examples and diagrams are taken from the textbook.
11.3 CROSS PRODUCTS

• \(\hat{i} \) is unit vector in \(x \), \(\hat{j} \) is unit vector in \(y \), and \(\hat{k} \) is unit vector in \(z \)

• \(\mathbf{u} = u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k} \) and \(\mathbf{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k} \)

• \(\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
u_1 & u_2 & u_3 \\
v_1 & v_2 & v_3
\end{vmatrix} \)

• If \(\mathbf{u} = \langle -2, 3, -3 \rangle \) and \(\mathbf{v} = \langle 1, -2, 1 \rangle \), find \(\mathbf{u} \times \mathbf{v} \)

• \(\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 3 & -3 \\
1 & -2 & 1
\end{vmatrix} \)

• \(= 3\hat{i} + (-3) \hat{j} + 4\hat{k} - 3\hat{k} - 6\hat{i} - (-2)\hat{j} \)

• \(= -3\hat{i} - \hat{j} + \hat{k} = \langle -3, -1, 1 \rangle \)
11.3 CROSS PRODUCTS

- Properties of Cross Products
- \(\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u}) \)
- \(\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w}) \)
- \(c(\mathbf{u} \times \mathbf{v}) = c\mathbf{u} \times \mathbf{v} = \mathbf{u} \times c\mathbf{v} \)
- \(\mathbf{u} \times \mathbf{u} = 0 \)
 - If \(\mathbf{u} \times \mathbf{v} = 0 \), then \(\mathbf{u} \) and \(\mathbf{v} \) are parallel
- \(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} \)
- \(\mathbf{u} \times \mathbf{v} \) is orthogonal to \(\mathbf{u} \) and \(\mathbf{v} \)
- \(\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\|\|\mathbf{v}\| \sin \theta \)
11.3 CROSS PRODUCTS

• $A = bh$
• $h = ||\vec{u}|| \sin \theta$
• $A = ||\vec{v}|| ||\vec{u}|| \sin \theta$
• Area of a Parallelogram
 • $||\vec{u} \times \vec{v}||$ where \vec{u} and \vec{v} represent adjacent sides
11.3 CROSS PRODUCTS

- **Triple Scalar Product (shortcut)**

 \[\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \]

- **Volume of Parallelepiped**

 - (3-D parallelogram)

 \[V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \] where \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) represent adjacent edges
11.4 LINES AND PLANES IN SPACE

PRECALCULUS
• This Slideshow was developed to accompany the textbook
 • Precalculus with Limits
 • By Larson, R., Hostetler, R.
 • 2007 Houghton Mifflin Company
• Some examples and diagrams are taken from the textbook.
11.4 LINES AND PLANES IN SPACE

- Lines
 - Line \(L \) goes through points \(P \) and \(Q \)
 - \(\mathbf{v} \) is a direction vector for \(L \)
 - Start at \(P \) and move any distance in direction \(\mathbf{v} \) to get some point \(Q \)
 - \(\overrightarrow{PQ} = tv \) because they are parallel
 - \(\langle x - x_1, y - y_1, z - z_1 \rangle = \langle at, bt, ct \rangle \)
 - General form
11.4 LINES AND PLANES IN SPACE

• Parametric Equations of Line
 • Take each component of the general form and solve for \(x, y, \) or \(z \).
 \[
 x = at + x_1 \\
 y = bt + y_1 \\
 z = ct + z_1
 \]
 • We used these when we solved 3-D systems of equations and got many solutions

• Symmetric Equation of Line
 • Solve each equation in parametric equations for \(t \)
 \[
 \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}
 \]
11.4 LINES AND PLANES IN SPACE

- Find a set of parametric equations of the line that passes through \((1, 3, -2)\) and \((4, 0, 1)\).
- Find the direction vector between those two points.
 - \(\vec{v} = \langle 4 - 1, 0 - 3, 1 - (-2) \rangle\)
 - \(= \langle 3, -3, 3 \rangle\)
 - \(= \langle a, b, c \rangle\)
- Let’s call the first point \((1, 3, -2) = (x_1, y_1, z_1)\)
- Plug it in
 \[x = at + x_1\]
 \[y = bt + y_1\]
 \[z = ct + z_1\]
 \[x = 3t + 1\]
 \[y = -3t + 3\]
 \[z = 3t - 2\]
11.4 LINES AND PLANES IN SPACE

- Planes
- \(\vec{PQ} \cdot \vec{n} = 0 \) because they are perpendicular

- Standard form
 - \(a(x - x_1) + b(y - y_1) + c(z - z_1) = 0 \)

- General form
 - \(ax + by + cz + d = 0 \)
11.4 LINES AND PLANES IN SPACE

- Find the general equation of plane passing through $A(3, 2, 2), B(1, 5, 0)$, and $C(1, -3, 1)$
- We need to find the normal vector to the plane.
 - Find two vectors in the plane
 - $\vec{AB} = \langle 1 - 3, 5 - 2, 0 - 2 \rangle = \langle -2, 3, -2 \rangle$
 - $\vec{BC} = \langle 1 - 1, -3 - 5, 1 - 0 \rangle = \langle 0, -8, 1 \rangle$
 - Find the cross product to get a perpendicular (normal) vector
 - $\vec{n} = \vec{AB} \times \vec{BC}$
 - $\vec{n} = \begin{vmatrix}
 \hat{i} & \hat{j} & \hat{k} \\
 -2 & 3 & -2 \\
 0 & -8 & 1
 \end{vmatrix} = \hat{i} \begin{vmatrix} 3 & -2 \\ -8 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 3 \\ 0 & -8 \end{vmatrix}$
 - $\vec{n} = 3\hat{i} + 0\hat{j} + 16\hat{k} - 0\hat{k} - 16\hat{j} - 2\hat{j}$
 - $\vec{n} = -13\hat{i} + 2\hat{j} + 16\hat{k} = \langle a, b, c \rangle$
- Fill in the general form
 - I chose $B(1, 5, 0) = \langle x_1, y_1, z_1 \rangle$
 - $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$
 - $-13(x - 1) + 2(y - 5) + 16(z - 0) = 0$
- Simplify to get general form
 - $-13x + 2y + 16z + 3 = 0$
11.4 LINES AND PLANES IN SPACE

- Angle between two planes
 - Find the angle between normal vectors
 - Normal vectors are coefficients in the equations of the plane
 - $\mathbf{n}_1 \cdot \mathbf{n}_2 = ||\mathbf{n}_1||||\mathbf{n}_2|| \cos \theta$
11.4 LINES AND PLANES IN SPACE

- Graphing planes in space
 - Find the intercepts
 - Plot the intercepts
 - Draw a triangle to represent the plane
- Sketch $3x + 4y + 6z = 24$
 - x-int $3x = 24 \rightarrow x = 8$
 - y-int $4y = 24 \rightarrow y = 6$
 - z-int $6z = 24 \rightarrow z = 4$
11.4 LINES AND PLANES IN SPACE

- Distance between a Point and a Plane
- \[D = \|proj_{\mathbf{n}} \overrightarrow{PQ}\| \]
- \[D = \left| \frac{\overrightarrow{PQ} \cdot \mathbf{n}}{\|\mathbf{n}\|} \right| \]