Introduction

Ways in which a Defined Process can Help (cf. Humphrey, 1995, p. 29)

- Identifies principal job activities
- Separates job’s routine from its complex elements
- Establishes precise phase entry and exit criteria (thus allowing you to know when a task is complete)
- Helps understand performance
- Helps estimate when tasks will be completed
- Historical data helps judge accuracy of predictions
- Historical process data helps identify “trouble” phases
- Facilitates focused improvement efforts

The Baseline Personal Process

PSP0: The Baseline Process

- The PSP0 process provides:
 - A convenient structure for doing small-scale tasks.
 - What I do, when, what order.
 - A framework for measuring those tasks.
 - Help analyze, understand, and improve your process.
 - Defined steps -> explicit measures
 - A foundation for process improvement.
 - “If you don’t know what you’re doing, it is hard to improve it.”

- cf. fig. 2.1, p. 21 (PSP0 Process Flow)
Forms

Why Use Forms? *(cf. Humphrey, 1995, p. 32)*

- Any reasonably complex job involves:
 - Determining what must be done.
 - Deciding how to do it.
 - Doing it.
 - Checking to be sure it is correct.
 - Fixing problems.
 - Delivering the final product.

- Standardized forms help in almost every step of this process.

The PSP0 Process

PSP0 Process Elements *(Humphrey, 1995, p. 34, & Lecture 1, slide 24)*

- Planning Phase - estimate development time
- Development Phase - develop the product using your current methods
- Postmortem Phase - complete the project plan summary, with the time spent and defects found and injected in each phase.

 - cf. Fig. 2.2, PSP0 Process
 - cf. Table 2.1, PSP0 Process Script

Notes:
- Phase = process element with definition and structure
- Step / Task = undefined / unstructured process element

Fuzzy vs. Clear Phase Distinctions *(cf. Humphrey, 1995, p. 35)*

- Design, code, compile, & test are difficult to distinguish
- Explicit entry / exit criteria distinguish
- Ex: code / compile
 - Writing code from design is code time.
 - Fixing compile defects is compile time.
 - Fixing test defects is test time (even though compilation is performed).

Four PSP0 Scripts *(cf. Humphrey, 1995, p. 38)*

- Process Script
 - Guides in developing module-level programs
- Planning Script
 - Guides in PSP planning process
- Development Script
 - Guides in the development of small programs
- Post Mortem Script
 - Guides in PSP postmortem process

- Look at details on pp. 36-38.
PSP0 Measures, Logs, & Project Plan Summary

Two PSP0 Measures
(cf. Humphrey, 1995, p. 37, 38)

- **Time spent / phase**
 - Actual clock time
 - Use natural units (minutes, vs. 0.x hours, etc.)

- **Defects found / phase**
 - Defect = one program change during compile or test
 - One change may be a single character or multiple statements, etc.
 - As long as the changes all pertain to the same compile or test problem they are part of one defect.

Collecting PSP0 data gives you a baseline from which to plan future projects.

Time Recording Log
(cf. Humphrey, 1995, p. 39-44)

- Look over Time Recording Log, Instructions, and Example (p. 40-2)
- Use stop watch
- If actual time not recorded, estimate as soon after you realize it as possible
- “Design on the fly” is counted as coding
- Time in compile phase = time to compile correctly first time
- Compilation while testing is counted as time in test phase.

Defect Recording Log
(cf. Humphrey, 1995, p. 44-48)

- Look over Defect Recording Log, Instructions, Defect Type Std, and Example (p. 45-8)
- Use standard defect types - don’t create your own defect types until after you gain plenty of experience and know you need additional types.
- Indicate the phase where you believe the defect was injected. If uncertain, make best estimate.
- Indicate the phase in which you found & removed the defect. Sometimes (though rarely) you will remove a defect in a different phase from where you found it. If so, specify this.
- Indicate fix time - using a stop watch to help.

The Multiple Defect Problem
(cf. Humphrey, 1995, p. 48-51)

- **Problems:**
 - While fixing one defect you encounter and fix another.
 - While fixing one defect you inject another.

- **Solution:**
 - Separately record the time spent on each.
 - If you divert to fix a different defect, subtract its fix time from the one you originally were working on.
 - A defect injected while fixing another is still a unique defect of its own.

Value of Finding & Fixing Defects Early
(cf. Humphrey, 1995, p. 50)

Defects found and fixed in test take 5-10 times as long as those found earlier.

cf. Example, p. 48-9, 51
Project Plan Summary
(cf. Humphrey, 1995, p. 50-54)

- Summarizes estimated & actual project data in convenient form.
- Look over Project Plan Summary, Instructions, & Example on pp. 52-4.
- Note “To Date” and “To Date %”.

On (Not) Customizing the Initial Process

Customization Guidelines
(cf. Humphrey, 1995, p. 54, 55)

- Later, when you customize the PSP:
 - Write down the process and give it a number.
 - Keep it simple!
 - Include planning and postmortem phases in every process (to aid process improvement).
 - Always gather basic PSP0 data - you can gather more, but use this as a minimum.
 - Create and use forms.
 - Make form formats convenient to use.
 - Make sure the whole process stays consistent as you update it.

Don’t Customize for INSY 560

- Don’t customize the PSP process or forms for work in INSY 560.
- This would involve revising all the forms, scripts, etc. for the whole book!

Homework 1A

- Calculate the Mean & SD of a list of numbers which are stored in a Linked List.
 - See appendix D for details.
 - Use appendix C and master form disk (available at CSIS office) for submission information.