Planning III-A: Estimating Software Size - Estimating Methods, Proxies

Outline

- Review of PSP Levels
- Background
- Criteria for a size estimating method
- Some popular estimating methods
- Proxy-based estimating
- Homework #3

Review of PSP Levels (Humphrey, 1995, p. 11)

- PSP0
 - Current process
 - Time recording
 - Defect recording
 - Defect type standard
- PSP1
 - Size estimating
 - Test report
- PSP2
 - Code reviews
 - Design reviews
- PSP2.1
 - Design templates
- PSP3
 - Cyclic development
 - PSP1.1
 - Task planning
 - Schedule planning
- PSP0.1
 - Coding standard
 - Size measurement
 - Process improvement proposal (PIP)
 - Baseline

Background (cf. Humphrey, 1995, p. 97-98)

- Poor planning is a major reason why projects have trouble, and many fail.
- Size-estimating is the generally-accepted practice in engineering, manufacturing, and construction.
 - Start with general estimate or demonstration of similar-feature product.
 - (Iteratively) refine requirements and estimates.

- Define Requirements
- Produce Conceptual Design
- Estimate Product Size
- Estimate Resources
- Produce Schedule
- Develop Product
- Analyze the Process
- Tracking Reports

Background (cf. Humphrey, 1995, p. 99-100)

- “The tricky part of software size estimating is in characterizing the product elements and relating them to your historical experience.”
- The accuracy of any size-resource-cost model is limited by the accuracy of the size estimates. So, even when you use an estimating model, you need an accurate size estimate.
- Models must be calibrated to the organizations which use them.
- Estimation errors can be very large, even 100% or more.
- Very few professionals (22% in JPL study) use size estimation to make cost estimates.
- Early project uncertainty makes it hard to accurately estimate SW size.
 - PC, PI, and Objects may reduce this problem.
Criteria for a Size-Estimating Method

- Uses structured and trainable methods.
- Can use in all phases of development & maintenance.
- Usable for all SW product elements: code, files, reports, screens, & documentation.
- Suitable for statistical analysis.
- Applicable to future types of work.
- Provides a means to judge the accuracy of your work.

Popular Estimating Methods: Delphi

- Uses several estimators
- Coordinator calculates average and returns summary forms
- Estimators discuss results
- Iterate until consensus
 - Initial SLOC: A=100, B=500, C=350, avg=317
 - 2nd estimate: A=275, B=400, C=325, avg=333
 - 3rd estimate: A=300, B=375, C=300, avg=325
- Can be very accurate, but
- Relies on a few experts,
- Is time consuming, and
- Can be biased.

Popular Estimating Methods: Fuzzy Logic

- Roughly judge how predicted size compares with historical data.
- Historical data is divided into topical categories and subgroups based on size. You need a large amount of historical data for this.
- Look at examples on p. 103-105.
 (Note: log_{10}(LOC) is used to create equally-sized ranges.)

Popular Estimating Methods: Standard Components

- Make a list of standard components
- Files, modules, subsystems, screens, ...
- Determine historical average SLOC for each standard component
- Estimate min, most-likely, and max number of each required standard component
- Calculate estimated number of each required component
 - Number = (min + 4*most-likely + max)/6
- Multiply each component's estimated number by its historical average SLOC
- Sum these SLOC's to obtain a total estimate for the project.
- Look at the example on p. 106.
- Easy to use, but
- Probably lack good historical base for large components, which must be estimated early in project.
Popular Estimating Methods: Function Points
(cf. Humphrey, 1995, p. 102-103)

- Function-point = arbitrary unit.
- Most popular method for estimating the size of commercial SW apps.
- Albrecht (1979) at IBM.
- Five basic functions that occur frequently in commercial SW:

<table>
<thead>
<tr>
<th>Function Types</th>
<th>Weights</th>
<th>Basic Count</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>x5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inquiries</td>
<td>x4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Files</td>
<td>x10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
<td>x7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note adjustment factor calculation on p. 108.
- Not directly measurable in end-product, don’t reflect development language, skill not readily improved w/o large historical database.

Proxy-Based Estimating
(cf. Humphrey, 1995, lecture slides)

- Basic issues:
 - Good size measures are detailed and based on historical data.
 - Early estimators can rarely think in detail. (e.g. home construction and square feet vs. number, types, and sizes of rooms)
- Alternatives
 - Wait until you have the detail to generate an estimate
 - Make your best guess
 - Use a suitable proxy

Definition of a Proxy
(cf. Humphrey, 1995, p. 111)

- Def:
 - “A proxy is a substitute or stand-in”, something that is used in place of another.
- A good proxy provides an easy early visualization of, and is related to, the size of the final product.
- Examples:
 - Objects, screens, files, scripts, function points, ...

Criteria for a Good Proxy
(cf. Humphrey, 1995, p. 111-113)

- Related to Development Effort
- Automatically Countable
- Easily Visualizable at Project Start
- Customizable to Organization’s Needs
- Sensitive to Implementation Variations (e.g. language, design style, application categories, etc.)

Potential Proxies
(cf. Humphrey, 1995, p. 111)

- Objects, document chapters - seem to meet proxy criteria.
- Screens, reports, scripts - not enough data to draw conclusions.
- Collect data and assess each type’s applicability to your work.
Objects as Proxies
(cf. Humphrey, 1995, 113-116, and lecture slides)

- Object counts correlate well with development hours
- Object LOC correlates very closely - functions & procedures may work too (cf. graphs on p. 114-116, and below)

General Proxy Choice and Use Process
(cf. Humphrey, 1995, 113-117)

- Collect data on proxy
- Correlate proxy with total product LOC and development hours
- If good correlation then it is a potential proxy
- Divide into categories and size ranges (as in Fuzzy-Logic method)
- Estimate based on assessment of similar categories and sizes
- Best to normalize object LOC to average method LOC
- Look at examples on p. 117.

Homework #3

- Program 3A
 - Program and object (or function) LOC counter
 - See p. 754, and Assignment Kit #3
- Reports R3
 - Defect analysis report
 - See p. 769-771