Design Verification

AU INSY 560, Winter 1997, Dan Turk

Outline

m Review of PSP Levels
m Overview

m Design Standards

m Verification Methods
* Approaches
» State Machines
* Program Tracing
* Program Correctness

m Etc.

AU INSY 560, Winter 1997, Dan Turk

Humphrey Ch. 12 - slide 1

m Selecting Verification Methods

Humphrey Ch. 12 - slide 2

Re\/l aN Of PSD Le\/el S (Humphrey, 1995, p. 11)

PSP3

CyCllC/ Cyclic development

Quality Mgt CPdSPZW ngsﬁgp.l.

Design reviews

PSP1 PSP1.1

H . X . Task plannin
Planning Sizeestimating gohefe planning
PSPO0.1
PSPO Coding standard
Current process Size measurement
1 Time recording Process improvement
Basellne Defect recording proposal (PIP)
Defect type standard
AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 3

OVEr'VIEW (o umpirey, 1955, p. 573574

m To build high-quality software you must ensure
that your designs are correct.

m Thus, the question is not whether, but how, to
verify your programs.
* These approaches are not foolproof.
» They are prone to human error.
* However, their structure facilitates accuracy and
reliability.
m This chapter discusses a number of methods for
doing this.
* Formal methods can sometimes be used.
* However, this book presents “semi-formal” methods.

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 4

Sl ecting Verification Methods

(cf. Humphrey, 1995, p. 374-376)

V erification M ethods

Humphrey (1995, p. 375)

M ethod Application Comments

Loop Program Use on loop logic w henever

V erification Loops practical.

Proper State State Use during design and in reviews and

M achines M achines inspections on every state machine.

Only

Symbolic Algorithmic Use whenever it applies.

Execution Logic

Proof by Loops & Usein conjunction with trace tables.

Induction R ecursion

Trace Tables Complex Use for small program elements and

Logic w ith proof by induction and/or

symbolic execution whenever
possible. Use if other verification
m ethods do not apply.

Execution Complex Use for small program elements and,

Tables Logic as a last resort, when no other
methods apply.

Form al Entire Use whenever you know how to

V erification Program apply the verification methods, they
appear feasible, and they are cost
effective.

m Select appropriate methods based on:
« Your defect profile: Use verification where you have problems.

« Effectiveness of your current methods: Use methods you know and are
effective with.

« Economics of your methods: Use the most cost-effective methods.
AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 5

Verification Methods:
D a gn 3a.ndar dS (cf. Humphrey, 1995, p. 376-378)

m Design standards do not seem like a verification method.

m However, they provide criteria against which to evaluate a
design.
m Some standards you should use are:
» Product conventions
— “Conceptual integrity”
» Product design standards
— Calling & naming conventions
— Header, test, and documentation standards & formats, ...
— May be arbitrary, but you need a standard.
* Reuse standards

— Components must be well-documented, available, meet needs,
and be reliable

— IBM’s German lab’s “OS components catalog” parts have never
received a user defect report

— Toshiba’s control system, which achieved 90% reuse, had the
“lowest defect content of any software [that users] had ever seen.”

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 6

Verification Methods:
Symbolic Execution

(cf. Humphrey, 1995, p. 378-379, & lecture dides)

m In symbolic execution, the approach is to:
 assign algebraic symbols to the program variables

* restate the program as one or more equations in these
symbols

» analyze the behavior of these equations

m Some questions to ask are:
» does the program converge on a result?

* how does the program behave for both normal and
abnormal input values?

» does the program always produce the desired results?
m cf. Example, p. 379, and Lect13.Ppt, p. 9+

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 7

Verification Methods:
Proof by Induction

(cf. Humphrey, 1995, p. 379-380, and lecture notes)

m Proof by induction states that:

1. if f(n) is true for n = k
2. and if

* whenn=2zwherez>k
« and f(z) is true
« you can show that f(z+1) is true

< f(n) is true for all values of n larger than k

m Look for places where there would be problems at z+1
(logical or hardware limits, memory, etc.)

m cf. Example, p. 380 (Function call)
m cf. Example, Lect12.Ppt, p. 39 (Factorial)

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 8

Verification Methods:
Sate Machines

(cf. Humphrey, 1995, p. 380-397)

m A program is likely a state machine if, with
identical inputs, it behaves differently at different
times.

m Example: LOC counter
e comments
* non-comments (program, executable)

m In a proper state machine:

 itis possible to reach a program return state from every
other state
« all state conditions are complete and orthogonal

« all transitions from each state are complete and
orthogonal

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 9

Rules for Checking for a
Proper Sate Machine

(cf. Humphrey, 1995, p. 381)

m Check for hidden traps or loops.
It cannot get stuck in an endless loop and never reach a
return state.
m See if all possible states have been identified.
» A state is defined for every possible combinations of
attributes.
m Check for state orthogonality.
» For every set of conditions there is one and only one
possible state.
m Check for transition completeness and
orthogonality.

* From every state, a unique next state is defined for every
possible combination of state machine input values.
AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 10

Two Examples of Checking
Sate M aChI n% (cf. Humphrey, 1995, p. 381-397)

m BSet

 cf. Fig 12.1 (state machine) and Table
12.3 (state specification), p. 382, 383

* Do checks
m CData

* cf. Fig 12.2 (state machine) and Table
12.5 (state specification), p. 385, 387-
389

* Do checks

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 11

Verification Methods:
Program Tracing

(cf. Humphrey, 1995, p. 397)

m Program tracing is performed with two
general methods:
* Execution Tables
» Trace Tables

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 12

Verification Methods:
Execution Tables

(cf. Humphrey, 1995, p. 397-405, and lecture notes)

m An execution table is an orderly way to trace program
execution.

 itis a manual check of the program flow

* it starts with initial conditions

» aset of variable values is selected

» each execution step is examined

» every change in variable values is entered

» program behavior is checked against the specification
m The advantages of execution tables are

» they are simple

 they give reliable proofs
m The disadvantages of execution tables are

» they only check one case at a time

» they are time consuming

» they are subject to human error

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 13

An Execution Table Example

(cf. Humphrey, 1995, p. 397-405, and lecture notes)

m To use an execution table

< identify the key program variables and enter them at the top of the trace
table

« enter the principal program steps
« determine and enter the initial conditions
< trace the variable values through each program step

< for repeating loops, add additional execution table steps for each
additional loop cycle

< for long loops, group intermediate steps if their results are obvious

m cf. ClearSpaces Example, Table 12.9,
Fig 12.3, etc., p. 396-405

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 14

Verification Methods:
Trace Tables

(cf. Humphrey, 1995, p. 400-418, and lecture notes)

m Trace tables are similar to execution
tables, but more general.

m Trace tables examine general
program behavior rather than
verifying individual cases.

m Trace tables use
* symbolic execution
 case checking

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 15

Example Trace Tables

(cf. Humphrey, 1995, p. 400-418, and lecture notes)

m Walk through examples from book
and from lecture notes

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 16

Verification Methods:
Program Correctness

(cf. Humphrey, 1995, p. 418-435, and lecture notes)

m Formal mathematical proof techniques exist and are good to
use when possible.
m However, we cover less formal approaches, but borrow
some ideas from the formal methods.
m We apply these approaches to the testing of loops:
» For-loop verification
* While-loop verification
* Repeat-until (do-while) verification
m Check:
» Preconditions
» Appropriate test cases
* Loop termination conditions
* FirstPart, SecondPart, ...

AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 17

Comments on
Verification Methods

(cf. Humphrey, 1995, p. 436-437)

m If you have any question about the validity of the
design, perform verification.

m Test at least a single case, even when confident of
the design.

m Design down, verify up.

m Verify all cases.

m Track time spent in verification and assess cost-
effectiveness of approaches after you become
familiar with the techniques.

m “When you verify your designs as you produce
them, your design verification data can greatly

accelerate your design reviews.”
AU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide 18

