
1

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 11

Design VerificationDesign Verification

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 22

OutlineOutline
Review of PSP Levels
Overview
Selecting Verification Methods
Design Standards
Verification Methods
• Approaches
• State Machines
• Program Tracing
• Program Correctness

Etc.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 33

Review of PSP Levels (Humphrey, 1995, p. 11)Review of PSP Levels (Humphrey, 1995, p. 11)

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

PSP3
Cyclic development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)Baseline

Planning

Quality Mgt

Cyclic

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 44

Overview (cf. Humphrey, 1995, p. 373-374)Overview (cf. Humphrey, 1995, p. 373-374)

To build high-quality software you must ensure
that your designs are correct.
Thus, the question is not whether, but how, to
verify your programs.
• These approaches are not foolproof.
• They are prone to human error.
• However, their structure facilitates accuracy and

reliability.

This chapter discusses a number of methods for
doing this.
• Formal methods can sometimes be used.
• However, this book presents “semi-formal” methods.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 55

Selecting Verification Methods
(cf. Humphrey, 1995, p. 374-376)

Selecting Verification Methods
(cf. Humphrey, 1995, p. 374-376)

Select appropriate methods based on:
• Your defect profile: Use verification where you have problems.
• Effectiveness of your current methods: Use methods you know and are

effective with.
• Economics of your methods: Use the most cost-effective methods.

V e r i f i c a t i o n M e t h o d s
H u m p h r e y (1 9 9 5 , p . 3 7 5)

M e t h o d A p p l i c a t i o n C o m m e n t s
L o o p
V e r i f i c a t i o n

P r o g r a m
L o o p s

U s e o n l o o p l o g i c w h e n e v e r
p r a c t i c a l .

P r o p e r S t a t e
M a c h i n e s

S t a t e
M a c h i n e s
O n l y

U s e d u r i n g d e s i g n a n d i n r e v i e w s a n d
i n s p e c t i o n s o n e v e r y s t a t e m a c h i n e .

S y m b o l i c
E x e c u t i o n

A l g o r i t h m i c
L o g i c

U s e w h e n e v e r i t a p p l i e s .

P r o o f b y
I n d u c t i o n

L o o p s &
R e c u r s i o n

U s e i n c o n j u n c t i o n w i t h t r a c e t a b l e s .

T r a c e T a b l e s C o m p l e x
L o g i c

U s e f o r s m a l l p r o g r a m e l e m e n t s a n d
w i t h p r o o f b y i n d u c t i o n a n d / o r
s y m b o l i c e x e c u t i o n w h e n e v e r
p o s s i b l e . U s e i f o t h e r v e r i f i c a t i o n
m e t h o d s d o n o t a p p l y .

E x e c u t i o n
T a b l e s

C o m p l e x
L o g i c

U s e f o r s m a l l p r o g r a m e l e m e n t s a n d ,
a s a l a s t r e s o r t , w h e n n o o t h e r
m e t h o d s a p p l y .

F o r m a l
V e r i f i c a t i o n

E n t i r e
P r o g r a m

U s e w h e n e v e r y o u k n o w h o w t o
a p p l y t h e v e r i f i c a t i o n m e t h o d s , t h e y
a p p e a r f e a s i b l e , a n d t h e y a r e c o s t
e f f e c t i v e .

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 66

Verification Methods:
Design Standards (cf. Humphrey, 1995, p. 376-378)

Verification Methods:
Design Standards (cf. Humphrey, 1995, p. 376-378)

Design standards do not seem like a verification method.
However, they provide criteria against which to evaluate a
design.
Some standards you should use are:
• Product conventions

– “Conceptual integrity”
• Product design standards

– Calling & naming conventions
– Header, test, and documentation standards & formats, …
– May be arbitrary, but you need a standard.

• Reuse standards
– Components must be well-documented, available, meet needs,

and be reliable
– IBM’s German lab’s “OS components catalog” parts have never

received a user defect report
– Toshiba’s control system, which achieved 90% reuse, had the

“lowest defect content of any software [that users] had ever seen.”

2

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 77

Verification Methods:
Symbolic Execution
(cf. Humphrey, 1995, p. 378-379, & lecture slides)

Verification Methods:
Symbolic Execution
(cf. Humphrey, 1995, p. 378-379, & lecture slides)

In symbolic execution, the approach is to:
• assign algebraic symbols to the program variables
• restate the program as one or more equations in these

symbols
• analyze the behavior of these equations

Some questions to ask are:
• does the program converge on a result?
• how does the program behave for both normal and

abnormal input values?
• does the program always produce the desired results?

cf. Example, p. 379, and Lect13.Ppt, p. 9+

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 88

Verification Methods:
Proof by Induction
(cf. Humphrey, 1995, p. 379-380, and lecture notes)

Verification Methods:
Proof by Induction
(cf. Humphrey, 1995, p. 379-380, and lecture notes)

Proof by induction states that:

1. if f(n) is true for n = k
2. and if

• when n = z where z > k
• and f(z) is true
• you can show that f(z+1) is true

3. then
• f(n) is true for all values of n larger than k

Look for places where there would be problems at z+1
(logical or hardware limits, memory, etc.)
cf. Example, p. 380 (Function call)
cf. Example, Lect12.Ppt, p. 39 (Factorial)

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 99

Verification Methods:
State Machines
(cf. Humphrey, 1995, p. 380-397)

Verification Methods:
State Machines
(cf. Humphrey, 1995, p. 380-397)

A program is likely a state machine if, with
identical inputs, it behaves differently at different
times.
Example: LOC counter
• comments
• non-comments (program, executable)

In a proper state machine:
• it is possible to reach a program return state from every

other state
• all state conditions are complete and orthogonal
• all transitions from each state are complete and

orthogonal

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1010

Rules for Checking for a
Proper State Machine
(cf. Humphrey, 1995, p. 381)

Rules for Checking for a
Proper State Machine
(cf. Humphrey, 1995, p. 381)

Check for hidden traps or loops.
• It cannot get stuck in an endless loop and never reach a

return state.

See if all possible states have been identified.
• A state is defined for every possible combinations of

attributes.

Check for state orthogonality.
• For every set of conditions there is one and only one

possible state.

Check for transition completeness and
orthogonality.
• From every state, a unique next state is defined for every

possible combination of state machine input values.

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1111

Two Examples of Checking
State Machines (cf. Humphrey, 1995, p. 381-397)

Two Examples of Checking
State Machines (cf. Humphrey, 1995, p. 381-397)

BSet
• cf. Fig 12.1 (state machine) and Table

12.3 (state specification), p. 382, 383
• Do checks

CData
• cf. Fig 12.2 (state machine) and Table

12.5 (state specification), p. 385, 387-
389

• Do checks

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1212

Verification Methods:
Program Tracing
(cf. Humphrey, 1995, p. 397)

Verification Methods:
Program Tracing
(cf. Humphrey, 1995, p. 397)

Program tracing is performed with two
general methods:
• Execution Tables
• Trace Tables

3

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1313

Verification Methods:
Execution Tables
(cf. Humphrey, 1995, p. 397-405, and lecture notes)

Verification Methods:
Execution Tables
(cf. Humphrey, 1995, p. 397-405, and lecture notes)

An execution table is an orderly way to trace program
execution.
• it is a manual check of the program flow
• it starts with initial conditions
• a set of variable values is selected
• each execution step is examined
• every change in variable values is entered
• program behavior is checked against the specification

The advantages of execution tables are
• they are simple
• they give reliable proofs

The disadvantages of execution tables are
• they only check one case at a time
• they are time consuming
• they are subject to human error

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1414

An Execution Table Example
(cf. Humphrey, 1995, p. 397-405, and lecture notes)

An Execution Table Example
(cf. Humphrey, 1995, p. 397-405, and lecture notes)

To use an execution table
• identify the key program variables and enter them at the top of the trace

table
• enter the principal program steps
• determine and enter the initial conditions
• trace the variable values through each program step
• for repeating loops, add additional execution table steps for each

additional loop cycle
• for long loops, group intermediate steps if their results are obvious

cf. ClearSpaces Example, Table 12.9,
Fig 12.3, etc., p. 396-405

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1515

Verification Methods:
Trace Tables
(cf. Humphrey, 1995, p. 400-418, and lecture notes)

Verification Methods:
Trace Tables
(cf. Humphrey, 1995, p. 400-418, and lecture notes)

Trace tables are similar to execution
tables, but more general.
Trace tables examine general
program behavior rather than
verifying individual cases.
Trace tables use
• symbolic execution
• case checking

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1616

Example Trace Tables
(cf. Humphrey, 1995, p. 400-418, and lecture notes)

Example Trace Tables
(cf. Humphrey, 1995, p. 400-418, and lecture notes)

Walk through examples from book
and from lecture notes

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1717

Verification Methods:
Program Correctness
(cf. Humphrey, 1995, p. 418-435, and lecture notes)

Verification Methods:
Program Correctness
(cf. Humphrey, 1995, p. 418-435, and lecture notes)

Formal mathematical proof techniques exist and are good to
use when possible.
However, we cover less formal approaches, but borrow
some ideas from the formal methods.
We apply these approaches to the testing of loops:
• For-loop verification
• While-loop verification
• Repeat-until (do-while) verification

Check:
• Preconditions
• Appropriate test cases
• Loop termination conditions
• FirstPart, SecondPart, ...

AU INSY 560, Winter 1997, Dan TurkAU INSY 560, Winter 1997, Dan Turk Humphrey Ch. 12 - slide Humphrey Ch. 12 - slide 1818

Comments on
Verification Methods
(cf. Humphrey, 1995, p. 436-437)

Comments on
Verification Methods
(cf. Humphrey, 1995, p. 436-437)

If you have any question about the validity of the
design, perform verification.
Test at least a single case, even when confident of
the design.
Design down, verify up.
Verify all cases.
Track time spent in verification and assess cost-
effectiveness of approaches after you become
familiar with the techniques.
“When you verify your designs as you produce
them, your design verification data can greatly
accelerate your design reviews.”

