Planning III-A:
Estimating Software Size -
Estimating Methods, Proxies

Outline
- Review of PSP Levels
- Background
- Criteria for a size estimating method
- Some popular estimating methods
- Proxy-based estimating
- Homework #3

Review of PSP Levels (Humphrey, 1995, p. 11)

Review of the Project Planning Framework (cf. Humphrey, 1995, p. 96)

Background (cf. Humphrey, 1995, p. 97-98)

Background (cf. Humphrey, 1995, p. 98-99)
Criteria for a Size-Estimating Method

- Uses structured and trainable methods.
- Can use in all phases of development & maintenance.
- Usable for all SW product elements: code, files, reports, screens, & documentation.
- Suitable for statistical analysis.
- Applicable to future types of work.
- Provides a means to judge the accuracy of your work.

- Uses several estimators
- Coordinator calculates average and returns summary forms
- Estimators discuss results
- Iterate until consensus

- Ex:
 - Initial SLOC: A=100, B=500, C=350, avg=317
 - 2nd estimate: A=275, B=400, C=325, avg=333
 - 3rd estimate: A=300, B=375, C=300, avg=325

- Can be very accurate, but
- Relies on a few experts,
- Is time consuming, and
- Can be biased.

- Roughly judge how predicted size compares with historical data.
- Historical data is divided into topical categories and subgroups based on size. You need a large amount of historical data for this.
- Look at examples on p. 103-105.

Fuzzy Logic In-Class Practice Problem

- See “In-Class Practice Problems” handouts

- Make a list of standard components
 - Files, modules, subsystems, screens, ...
- Determine historical average SLOC for each standard component
- Estimate min, most-likely, and max number of each required standard component
- Calculate estimated number of each required component
 - Number = (min + 4*most-likely + max)/6
- Multiply each component’s estimated number by its historical average SLOC
- Sum these SLOC’s to obtain a total estimate for the project.
- Look at the example on p. 106.

Standard Components In-Class Practice Problem

- See “In-Class Practice Problems” handouts
Popular Estimating Methods: Function Points
(cf. Humphrey, 1995, p. 102-103)

- Function-point = arbitrary unit.
- Most popular method for estimating the size of commercial SW apps.
- Albrecht (1979) at IBM.
- Five basic functions that occur frequently in commercial SW:

<table>
<thead>
<tr>
<th>Function Types</th>
<th>Weight</th>
<th>Basic Count</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reports</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queries</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Files</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfaces</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note adjustment factor calculation on p. 108.
- Not directly measurable in end-product, don’t reflect development language, skill not readily improved w/o large historical database.

In-Class Practice Problem

See “In-Class Practice Problems” handouts

Proxy-Based Estimating
(cf. Humphrey, 1995, lecture slides)

- Basic issues:
 - Good size measures are detailed and based on historical data.
 - Early estimators can rarely think in detail. (e.g. home construction and square feet vs. number, types, and sizes of rooms)
- Alternatives
 - Wait until you have the detail to generate an estimate
 - Make your best guess
 - Use a suitable proxy

Definition of a Proxy
(cf. Humphrey, 1995, p. 211)

- Def:
 - “A proxy is a substitute or stand-in”, something that is used in place of another.
 - A good proxy provides an easy early visualization of, and is related to, the size of the final product.
- Examples:
 - Objects, screens, files, scripts, function points...

Criteria for a Good Proxy
(cf. Humphrey, 1995, p. 111-113)

- Related to Development Effort
- Automatically Countable
- Easily Visualizable at Project Start
- Customizable to Organization’s Needs
- Sensitive to Implementation Variations (e.g. language, design style, application categories, etc.)

Potential Proxies
(cf. Humphrey, 1995, p. 113)

- Objects, document chapters - seem to meet proxy criteria.
- Screens, reports, scripts - not enough data to draw conclusions.
- Collect data and assess each type’s applicability to your work.
Objects as Proxies
(c.f. Humphrey, 1995, 113-116, and course slides)

- Object counts correlate well with development hours
- Object LOC correlates very closely - functions & procedures may work too
 (c.f. graphs on p. 114-116, and below)

General Proxy Choice and Use Process
(c.f. Humphrey, 1995, 113-117)

- Collect data on proxy
- Correlate proxy with total product LOC and development hours
- If good correlation then it is a potential proxy
- Divide into categories and size ranges (as in Fuzzy-Logic method)
- Estimate based on assessment of similar categories and sizes
- Best to normalize object LOC to average method LOC

Homework #3

- See “Homework Assignments” list and textbook instructions.