PHYS 141

In Class Assignment \# 4

Name:
Box \#:

1. Write down something you learned about centripetal acceleration or relative motion. (2pts)
2. Write down a question you have about centripetal acceleration or relative motion. (2pts)
3. You are riding in a boat going $6.1 \mathrm{~m} / \mathrm{s}$ at an angle of 25° downstream from the straight across direction relative to the water. The river is flowing at $1.4 \mathrm{~m} / \mathrm{s}$. What is your velocity relative to the ground?
a) Fill in subscripts for the symbols for (3pts)
velocity of the boat with respect to the water \mathbf{v}_{-}
velocity of the water with respect to the ground \mathbf{v}_{-}
velocity of the boat with respect to the ground \mathbf{v}_{-}
b) Use these labels and draw vectors in a picture that includes the boat, river and shore. (4pts)

Upstream

Downstream
c) Use the vectors from part a to make an equation relating the relative velocities: (3pts)

$$
\mathbf{v}_{--}=\mathbf{v}_{--}+\mathbf{v}_{--}
$$

d) Fill in the table to add the two vectors on the right hand side of the equation from part c (6 pts)

Vector	x-comp	y-comp
Vector 1		
Vector 2		
resultant		

e) Find the magnitude of the resultant. $\quad R=\sqrt{R_{x}^{2}+R_{y}^{2}}=$ \qquad $\mathrm{m} / \mathrm{s}(3 \mathrm{pts})$
f) Find the angle of the resultant $\quad \theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=$ \qquad degrees (3pts)

