General Physics I

Math Warm-Up (Appendix A)
 Measurements \& Units

Coordinates \& Speed (Ch 1, Secs 1-2)

Day 1, Video 1

Class Particulars, Syllabus \& Materials

Class Business

- Class resources at https://learninghub.andrews.edu
- Textbook
- Homework, Lecture Slides, Test Study Materials
- Lab Videos, Instructions \& Submissions iclickert
iClicker 2
- iClicker Registration
- Materials
- Textbook
- iClicker
- Scientific or graphing calculator

Day 1, Video 2

Intro to Physics

Scientific Notation \& Math Rev 1

Question \#1

- My favorite fundamental force is
A. Gravity
B. Electro-Magnetic
C. Strong Nuclear
D. Weak Nuclear

What is Physics?

- Most fundamental of the sciences
- Building models to describe the physical world
- The study of ...
- Motion, Forces, Heat, Energy, Sound, Electricity \& Magnetism, Light, Optics, Materials, Atoms, Nuclei, Particles, Spacetime, Stars, The Cosmos, etc.

Scientific Notation

$$
\begin{array}{cc}
10^{0}=1 & 10^{-1}=0.1 \\
10^{1}=10 & 10^{-2}=0.01 \\
10^{2}=100 & \\
3 \times 10^{2}=300 & \quad 6 \times 10^{-2}=0.06 \\
\text { Decimal } & \begin{array}{c}
\text { Decimal moves to left }
\end{array}
\end{array}
$$

$$
\left(3 \times 10^{6}\right)\left(4 \times 10^{4}\right)=(3 \cdot 4) \times 10^{6+4}=12 \times 10^{10}=1.2 \times 10^{11}
$$

$$
\frac{6 \times 10^{6}}{3 \times 10^{4}}=\frac{6}{3} \times 10^{6-4}=2 \times 10^{2}
$$

Algebra

- Natural exponents / logarithms
$4=e^{x} \quad \longleftarrow$ Undo with \ln
$\ln (4)=\ln \left(e^{x}\right)$
$1.39=x$
$\ln x=3 \longleftarrow$ Undo with e
$e^{\ln x}=e^{3}$
$x=20.1$

Question \#2

$$
\frac{e^{x}-1}{2}=1
$$

What is the value of x ?
A. 0.41
B. 1.10
C. 4.48
D. 20.1

Linear Equations

$$
\mathrm{y}=\operatorname{mix}_{\substack{ \\\text { slope }}}+\underset{\substack{\mathrm{y} \\ \mathrm{y} \text {-intercept }}}{\mathrm{b}}
$$

slope $=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Question \#3

- The Slope of the Line is:
A.-3
B.-0.75
C. 4
D. 0.75
E.1.25

Day 1, Video 3

Math Rev 2

Quadratic Equations

$$
a x^{2}+b x+c=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example:

If $b^{2}-4 a c$ is negative, answer is imaginary

$$
\frac{-8 \pm \sqrt{-16}}{2}=-4 \pm \frac{1}{2}(\sqrt{16}) i=-4 \pm 2 i
$$

Question \#4

- Which of the following is a solution to the quadratic equation $\mathrm{x}^{2}+2 \mathrm{x}-3=0$
A. -1
B. 0
C. -3
D. 4
E. 12

Trigonometry

$$
\begin{aligned}
& \sin \theta=\frac{b}{c}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{a}{c}=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{b}{a}=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

$$
a^{2}+b^{2}=c^{2}
$$

Question \#5

- What is θ if $\mathrm{b}=2$ and $\mathrm{a}=3$?
A. 1.5°
B. 27.3°
C. 30.1°
D. 33.7°
E. 41.8°

Day 1, Video 4

Units

Tools of Physics - Units

- Physical quantities (volume, distance, speed, etc.) expressed in units
- All units can be expressed in terms of the fundamental units
- Area $=$ Length ${ }^{2}$, Speed $=$ Length $/$ Time

The New SI

- May 20, 2019 was a BIG DAY
- New definitions of fundamental SI units.

Tools of Physics - Units

Power	Prefix	Abbreviation
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Unit Prefixes

1 centimeter $=1 \times 10^{-2}=0.01$ meters 3 kilometers $=3 \times 10^{3}=3000$ meters

Tools of Physics - Unit Conversion

You pour a glass of milk in 5.0 seconds Convert to $\mathrm{cm}^{3} / \mathrm{min}$

1 glass $=0.20$ glasses $/$ second
 5.0 Seconds

Don' t forget exponents with squared, cubed units!

$$
\frac{0.20 \text { glasses }}{\text { second }}\left(\frac{2 \text { cups }}{1 \text { glass }}\right)\left(\frac{1 \text { gallon }}{16 \text { cups }}\right)\left(\frac{231 \mathrm{in}^{3}}{1 \text { gallon }}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}\left(\frac{60 \text { seconds }}{1 \mathrm{~min}}\right)=5.7 \times 10^{3} \mathrm{~cm}^{3} / \mathrm{min}
$$

Question \#6

- A camel can drink 20 gallons of water at a time. Suppose you have 600 liters of water. How much water is this in camels? (Hint: 1gallon = 3.786 liters)
A. 2.45
B. 7.92
C. 10.0
D. 80.5

Tools of Physics - Dimensional Analysis

- It is important that units agree

Tools of Physics - Dimensional Analysis

- Handy for equation checking
- Both sides of an equation should have matching units
$d=\frac{1}{2} a t^{2}$
$[L]=\frac{[L]}{[T]^{2}}[T]^{2}$
$[L]=[L]$

Question \#7

- Which of the following could be correct?
A. $\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}^{2} \quad(\mathrm{v}=$ velocity, $\mathrm{a}=$ acceleration $)$
B. $\mathrm{V}=\mathrm{Ah}(\mathrm{V}=$ volume, $\mathrm{A}=$ area, $\mathrm{h}=$ height $)$
C. $\mathrm{ma}=\mathrm{v}^{2}(\mathrm{~m}=$ mass, $\mathrm{a}=$ acceleration, $\mathrm{v}=$ velocity $)$
- Hint, SI units for: velocity $=\mathrm{m} / \mathrm{s}$, acceleration $=\mathrm{m} / \mathrm{s}^{2}$, volume $=\mathrm{m}^{3}$, are $=\mathrm{m}^{2}$, height $=\mathrm{m}$, mass $=\mathrm{kg}$

Day 1, Video 5

Sig Figs \& Estimation

Question \#8

- How long is the chocolate bar?
A. 4.38 cm
B. 4.39 cm
C. 4.40 cm
D. 4.41 cm
E. 4.42 cm

Tools of Physics - Sig. Figs

- All measurements involve uncertainty
- Addition / Subtraction - keep digits to smallest common significant decimal place
- Multiplication / Division - same as factor with smallest number of significant digits
13.062

+0.13
13.19

Tools of Physics - Sig. Figs

- Counting Sig Figs
- Rules are different for digits to the left and right of the decimal pt
- Placeholders don' t count, zeros that specify accuracy do (Is it necessary?)

Left
120 (2 sig figs)
120.0 (4 sig figs)
120. (3 sig figs)
1.20×10^{2} (3 sig figs)

Right
0.12 (2 sig figs)
0.012 (2 sig figs)
0.120 (3 sig figs)

Question \#9

0.023×1.00

- Which answer has the correct number of sig figs?
A. 0
B. 0.02
C. 0.023
D. 0.0230
E. 0.02300

Estimation

- Find out what the order of magnitude of something might be
- Make educated guesses of quantities
- Do calculations based on these guesses
- Round to nearest power of 10

Question \#10

- Estimate your age in months
A. 10^{0}
B. 10^{1}
C. 10^{2}
D. 10^{3}
E. 10^{4}

Day 1, Video 6

Coordinate Systems, Path Length \& Speed

Tools of Physics - Coordinate Systems

- Directions and positions of events \& objects specified by coordinate systems
- Origin plus coordinates / axes
- Choice of coordinate system up to the problem solver choose a system that simplifies your problem

Monday

Example 1

- A point in radial coordinates is $\mathrm{r}=5 \mathrm{~cm}$ and $\theta=32^{\circ}$. What are the x and y coordinates of this point?

Path Length

- Distance covered by a moving object $\mathrm{s}(\mathrm{t})$

Speed

- How fast is an object moving along its path?
- 2 Types
- Average Speed (entire trip)

$$
\bar{v}=\frac{\Delta s}{\Delta t}
$$

- Instantaneous Speed (speedometer reading)

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}
$$

Example 2

- During a road trip, a family travels for half an hour to the highway, 22 miles from their house. They travel 136 miles in 2 hours, stop for lunch for 1 hour and then reach their destination 3 hours and 201 miles later. What is the average speed during their trip?

Big Ideas

- Coordinate systems
- Choose the most convenient for your problem
- Path length
- Distance along an object's path
- Speed
- Average speed
- Entire path length / entire time for trip
- Instantaneous Speed
- Speedometer reading

