

General Physics I

Math Warm-Up (Appendix A) Measurements & Units Coordinates & Speed (Ch 1, Secs 1-2)

Monday

Day 1, Video 1 Class Particulars, Syllabus & Materials

Monday

Class Business

PHYS 141

- Class resources at https://learninghub.andrews.edu
 - Textbook
 - Homework, Lecture Slides, Test Study Materials
 - Lab Videos, Instructions & Submissions
 - iClicker Registration
- Materials
 - Textbook
 - iClicker
 - Scientific or graphing calculator

iClicker 2

iClicker+

Day 1, Video 2

Intro to Physics Scientific Notation & Math Rev 1

Monday

- My favorite fundamental force is A. Gravity
 - B. Electro-Magnetic
 - C. Strong Nuclear
 - D. Weak Nuclear

2 nm

What is Physics?

- Most fundamental of the sciences
- Building models to describe the physical world
- The study of ...
 - Motion, Forces, Heat, Energy, Sound, Electricity & Magnetism, Light, Optics, Materials, Atoms, Nuclei, Particles, Spacetime, Stars, The Cosmos, etc.

0.5 nm

Scientific Notation

 $10^0 = 1$ $10^{-1} = 0.1$ $10^1 = 10$ $10^{-2} = 0.01$ $10^2 = 100$

 $3 \times 10^2 = 300$. Decimal moves to right

 $6 \times 10^{-2} = 0.06$ Decimal moves to left

$$(3 \times 10^{6})(4 \times 10^{4}) = (3 \cdot 4) \times 10^{6+4} = 12 \times 10^{10} = 1.2 \times 10^{11}$$

$$\frac{6 \times 10^6}{3 \times 10^4} = \frac{6}{3} \times 10^{6-4} = 2 \times 10^2$$

Monday

Algebra

• Natural exponents / logarithms

$$4 = e^x$$
Undo with ln $\ln x = 3$ Undo with e $\ln(4) = \ln(e^x)$ $e^{\ln x} = e^3$ $1.39 = x$ $x = 20.1$

Monday

$$\frac{e^x - 1}{2} = 1$$

- What is the value of x?
 - A. 0.41
 - **B.** 1.10
 - C. 4.48
 - D. 20.1

• The Slope of the Line is:

A.-3 **B.-0.75** C.4 D.0.75

Monday

Day 1, Video 3

Math Rev 2

Monday

Quadratic Equations

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example:

$$4x^{2} + 10x + 1 = 0$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$a \qquad b \qquad c$$

If $b^2 - 4ac$ is negative, answer is imaginary $\frac{-8 \pm \sqrt{-16}}{2} = -4 \pm \frac{1}{2} (\sqrt{16})i = -4 \pm 2i$

Monday

- Which of the following is a solution to the quadratic equation $x^2 + 2x 3 = 0$
 - A. -1
 - B. 0
 - C. -3
 - D. 4
 - E. 12

 $a^2 + b^2 = c^2$

• What is θ if b=2 and a=3?

- C. 30.1°
- D. 33.7°
- E. 41.8°

Day 1, Video 4 Units

Tools of Physics - Units

- Physical quantities (volume, distance, speed, etc.) expressed in units
- All units can be expressed in terms of the **fundamental units**

- Area = Length², Speed = Length / Time

The New SI

- May 20, 2019 was a BIG DAY
- New definitions of fundamental SI units. New SI

Monday

ALL CHANGE

Under the revised SI system, every unit will be defined in relation to a constant, whose value will become fixed. Many of the units will be defined in relation to each other: for example, definition of the kilogram requires Planck's constant, and definitions of the second and metre.

---> Dependency

METRE (m)

Requires: Speed

SECOND (s) Measures: Time Requires: Hyperfine-transition frequency of the caesium-133 atom Definition: Duration of 9.192.631.770 cycles of the radiation corresponding to the

transition between Measures: Length two hyperfine levels of caesium-133

of light Definition: Length of the path travelled by light in a vacuum in 1/299,792,458 seconds

AMPERE (A)

Measures: Current Requires: Charge on the electron Definition: Electric current corresponding to the flow of 1/(1.602 176 634 × 10⁻¹⁹) elementary charges per second

KELVIN (K)

Measures: Temperature Requires: Boltzmann's constant Definition: Equal to a change in thermal energy of 1.380 649 x 10⁻²³ joules

onature

KILOGRAM (kg)

Measures: Mass Requires: Planck's constant Definition: One kilogram is Planck's constant divided by 6.626 070 15 × 10-34 m-2s

MOLE (mol)

Measures: Amount of substance Requires: Avogadro's constant Definition: Amount of substance of a system that contains 6.022 140 76 × 1023 specified elementary entities

Measures: Luminous intensity Requires: Luminous efficacy of monochromatic light of frequency 540 × 10¹² Hz

Definition: Luminous intensity of a light source with frequency 540 × 10¹² Hz and a radiant intensity of 1/683 watts per steradian

Tools of Physics - Units

Power	Prefix	Abbreviation
10 ¹⁸	exa	Е
10 ¹⁵	peta	Р
10 ¹²	tera	Т
109	giga	G
106	mega	М
10 ³	kilo	k
10 ²	hecto	h
101	deka	da
10-1	deci	d
10-2	centi	с
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	a

Unit Prefixes

1 centimeter = $1 \times 10^{-2} = 0.01$ meters 3 kilometers = $3 \times 10^3 = 3000$ meters

Solution Tools of Physics – Unit Conversion

You pour a glass of milk in 5.0 seconds Convert to cm³/min

 $\frac{1 \text{ glass}}{5.0 \text{ Seconds}} = 0.20 \text{ glasses / second}$

Don't forget exponents with squared, cubed units! $\frac{0.20 \text{ glasses}}{\text{second}} \left(\frac{2 \text{ cups}}{1 \text{ glass}}\right) \left(\frac{1 \text{ gallon}}{16 \text{ cups}}\right) \left(\frac{231 \text{ in}^3}{1 \text{ gallon}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^3 \left(\frac{60 \text{ seconds}}{1 \text{ min}}\right) = 5.7 \times 10^3 \text{ cm}^3 / \text{min}$

Monday

- A camel can drink 20 gallons of water at a time. Suppose you have 600 liters of water. How much water is this in camels? (Hint: 1gallon = 3.786 liters)
 - A. 2.45
 B. 7.92
 C. 10.0
 D. 80.5

Monday

S Tools of Physics – Dimensional Analysis

• It is important that units agree

Tools of Physics – Dimensional Analysis

- Handy for equation checking
 - Both sides of an equation should have matching units

$$d = \frac{1}{2}at^{2}$$
$$[L] = \frac{[L]}{[T]^{2}}[T]^{2}$$
$$[L] = [L]$$

- Which of the following could be correct?
 A. v = v₀ + at² (v = velocity, a = acceleration)
 B. V = Ah (V = volume, A = area, h = height)
 C. ma = v² (m = mass, a = acceleration, v = velocity)
- Hint, SI units for: velocity=m/s, acceleration=m/s², volume=m³, area=m², height=m, mass=kg

Day 1, Video 5 Sig Figs & Estimation

- How long is the chocolate bar?
 - A. 4.38 cm
 B. 4.39 cm
 C. 4.40 cm
 D. 4.41 cm
 E. 4.42 cm

Tools of Physics – Sig. Figs

- All measurements involve uncertainty
- Addition / Subtraction keep digits to smallest common significant decimal place
- Multiplication / Division same as factor with smallest number of significant digits 13.062

 $(0.012)(1.630 \times 10^3) = 2.0 \times 10^1$

+ 0.13

Tools of Physics - Sig. Figs

- Counting Sig Figs
 - Rules are different for digits to the left and right of the decimal pt
 - Placeholders don't count, zeros that specify accuracy do (Is it necessary?)

Left

120 (2 sig figs) 120.0 (4 sig figs) 120. (3 sig figs) 1.20×10² (3 sig figs)

Right

0.12 (2 sig figs)0.012 (2 sig figs)0.120 (3 sig figs)

Monday

0.023×1.00

- Which answer has the correct number of sig figs? A. 0
 - B. 0.02
 - C. 0.023
 - D. 0.0230
 - E. 0.02300

Estimation

- Find out what the order of magnitude of something might be
 - Make educated guesses of quantities
 - Do calculations based on these guesses
 - Round to nearest power of 10

- Estimate your age in months
 - A. 10°
 - **B.** 10¹
 - C. 10^{2}
 - **D.** 10³
 - E. 10⁴

Day 1, Video 6 Coordinate Systems, Path Length & Speed

Monday

Tools of Physics – Coordinate Systems

- Directions and positions of events & objects specified by coordinate systems
 - Origin plus coordinates / axes
- Choice of coordinate system up to the problem solver choose a system that simplifies your problem

Example 1

 A point in radial coordinates is r = 5 cm and θ = 32°. What are the x and y coordinates of this point?

Monday

Path Length

• Distance covered by a moving object s(t)

Monday

Speed

- How fast is an object moving along its path?
- 2 Types
 - Average Speed (entire trip)

$$\overline{v} = \frac{\Delta s}{\Delta t}$$

Instantaneous Speed (speedometer reading)

$$\begin{array}{c} 100 & 120 \\ 140 \\ 60 \\ 40 \\ 20 \end{array}$$

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

Monday

Example 2

• During a road trip, a family travels for half an hour to the highway, 22 miles from their house. They travel 136 miles in 2 hours, stop for lunch for 1 hour and then reach their destination 3 hours and 201 miles later. What is the average speed during their trip?

Big Ideas

- Coordinate systems
 - Choose the most convenient for your problem
- Path length
 - Distance along an object's path
- Speed
 - Average speed
 - Entire path length / entire time for trip
 - Instantaneous Speed
 - Speedometer reading