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Abstract

This thesis describes three LIGO data analysis projects. The first project is devel-
opment of a procedure that whitens LIGO data (white data have the same power
at all frequencies) and breaks it into several non-overlapping frequency bands. The
data can then be used by gravitational wave search algorithms that assume a white
noise background. Breaking the data into frequency bands not only simplifies the
whitening process but allows a rough frequency spectrum to be assigned to candi-
date events. A whitening figure of merit is also described and, in the case of data
from LIGO’s third science run, it is shown that the whitening procedure nearly
always improves the whiteness of the data.

The second project described in this thesis is development of a computationally
inexpensive test that can be run quickly over LIGO data to flag times where data
have been corrupted by a nonlinear coupling. The test is applied to LIGO data
and is shown to flag segments whose bispectra contains similar features to the
bispectra of data produced with a nonlinear model.

Finally, the third project seeks to address two problems that one would con-
front if one tried to do core-collapse supernova astronomy with gravitational waves.
The first problem involves extracting a short-duration gravitational waveform from
the data produced by a network of detectors. The maximum entropy method is
proposed as a solution to this deconvolution problem. The second problem in-
volves deducing properties of the source from the recovered waveform when our
source models are incomplete. We propose calculating the cross correlation be-
tween a recovered waveform and a catalog of waveforms associated with models
having varying properties. The catalog waveform having the highest cross cor-
relation with the recovered waveform is assumed to be associated with a model
whose properties most closely resemble those of the source. The maximum en-
tropy method is used to recover supernova waveforms from simulated LIGO data
which are created assuming detector responses and white noise having amplitudes
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typical of recent LIGO science runs. Next, the recovered waveform is cross cor-
related with a catalog of waveforms and it is shown that the recovered waveform
carries information about the type of bounce the core undergoes as well as the pro-
genitor mass, angular momentum and degree of differential rotation for supernova
occurring less than a few kpc away. Supernova waveforms are also recovered using
maximum entropy from simulated data using actual LIGO data for noise and from
hardware injections. Recovering signals from these data show that maximum en-
tropy can successfully handle colored noise and imperfect knowledge of the LIGO
detector responses.
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Chapter

Introduction

1.1 Gravitational Waves

In 1916 Einstein showed that one of the predictions of his theory of general relativ-
ity is the existence of gravitational waves. General relativity states that spacetime
curvature is determined by the distribution of matter and energy. As that distri-
bution changes, the curvature must also change and that curvature change travels
at the speed of light as ripples in spacetime. As they travel, gravitational waves
stretch and squeeze space in a direction transverse to their propagation. The mag-
nitude of these disturbances is specified by the unitless quantity strain (k) which
is the change in distance between two free masses divided by twice the distance
between them or h = AL/2L.

Gravitational waves are best produced by matter distributions with a large
variation in quadrupole moment. In cases where matter motion is slow compared
with the speed of light, the strongest possible component of strain is given by

_ 2G &[L,(t — R/c)]

Kz Rct dt? ’ (L1)

where G is the gravitational constant, ¢ the speed of light, R the distance to the
source, and I, the reduced quadrupole moment. One can see from this expression
that the strain produced by gravitational waves is extremely small. Only the most
dense, massive objects and most extreme events in the universe such as the big

bang, supernovae, and the coalescence of black holes and neutron stars produce



gravitational waves of significant strength. Even so, the gravitational waves from
these events are expected to produce strains at the Earth of no more than on the
order of 1072L.

Gravitational waves may be weak but their influence on the systems that emit
them has already been measured. In 1974 Hulse and Taylor discovered the pul-
sar PSR 1913+16 whose periodically varying pulsation rate indicated that it and
a companion neutron star were orbiting about their center of mass [6]. Subse-
quent measurements of this system have shown that the orbit is decaying and
the orbital frequency increasing in exact agreement with predictions of how much
energy should be lost through gravitational waves [7, 8].

PSR 1913+16 provides strong evidence that gravitational waves exist, but there
are still many incentives for attempting to measure gravitational waves themselves.
Gravitational waves can provide novel tests of general relativity. For example,
general relativity predicts that gravitational waves are transverse quadrupolar,
having only two polarizations (see Figure 1.1) whereas other theories of gravity
predict more. Gravitational waves also have the potential to open a new window
on the universe. The objects and events that produce them are sources of some
very perplexing questions. Gravitational waves from supernovae and rotating,
asymmetric neutron stars may contain valuable information about neutron star
material. Gravitational waves produced by black holes could give information
about these most mysterious objects whose presence can now only be inferred. In
short, the measurement of gravitational waves could be an invaluable new tool for
astronomy.

The attempt to measure gravitational waves directly was pioneered by Joseph
Weber in the 1960s with the development of his “Weber bars” [9]. These were
cylindrical bars of aluminum with quartz strain gauges that could measure vi-
brations caused by a gravitational wave passing through the bars at their reso-
nant frequencies. Gravitational wave resonant bar detectors are still in use in a
worldwide network that includes the detectors ALLEGRO [10], AURIGA [11], EX-
PLORER [12], NAUTILUS [13], and NIOBE [14]. These detectors are operated
at very low temperatures and incorporate other improvements over the first bars,
including sophisticated vibration isolation systems and using resonant transducers

to measure vibrations. In the future, it is likely that bars will change their shape



47 "%
- - -
i 90 o L A Ta gmmma i -1
+ - | i, ¥ - + » a *
1 + N 1 I + + - I -
[ » 1 1] H a2 5 1 »
. . H ¥ . L] - 1
L L] » = L3
* L] u + ' x o + 4
& - 3 ' - & 0 Tapam= i »
LR B r L PR
LI
- - - - -
- ., i % - ., L .. G .,
£ * - L + - « *
2 £y -+ " r b - . s £y
] [ ] o r " ] n - ] .
X L] ] = - ] ] L] 2y 1 ]
» * : » b ] » v » *
* - * * r * -
Tamm* . - Ya - e ¥ *
= A= anu* =

Figure 1.1. Gravitational wave polarizations. A set of free masses arranged in a circle
would follow the deformations of the circles shown above as a gravitational wave passed
through them. The top row shows the successive deformations that would be caused by
a gravitational wave with plus polarization traveling out of the page. The second row
shows the deformations caused by the cross polarization which are rotated 45 degrees
from the plus.

to spheres which are sensitive to gravitational waves coming from all directions
and will be sensitive to much wider frequency ranges as transducer designs are

improved [15].

1.2 Gravitational Wave Interferometers

Within the past few years, several large detectors have been built that are based
on an interferometric approach. These include the three LIGO detectors [16], two
in Hanford, Washington and one in Livingston, Louisiana, GEO 600 [17] near
Hannover, Germany, TAMA300 [18] in Tokyo, Japan, and VIRGO [19] in Cascina,
Italy.

In a gravitational wave interferometer, a laser beam is separated into two beams
by a beamsplitting mirror and sent down the perpendicular arms of the detector
(see Figure 1.2). At the end of each arm, the beam is reflected by a mirror and sent

back to interfere at the beamsplitter. The amount of interference is measured at
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Figure 1.2. Basic layout of an interferometric gravitational wave detector like LIGO.

Recycling

the detector’s output port. A passing gravitational wave will change the distances
between mirrors (which are hung as pendula and can be treated as free masses
above their pendulum frequencies) and hence a change in the amount of light
reaching the output port.

In order to increase the amount of interaction time between the wavefronts
traveling down the detector arms and the gravitational waves and therefore increase
the effective length of the arms, additional mirrors are placed after the beamsplitter
to make the arms into Fabry-Perot cavities. This approach is used with LIGO,
TAMA300 and VIRGO. GEO 600 uses a different approach of folding the light
path within its arms. In addition, all detectors use a mirror between the laser and
beam splitter to reflect light headed toward the laser back into the interferometer

and thus increase the effective power of the laser in a technique known as power



recycling. GEO 600 also employs signal recycling, where a mirror is placed in front

of the output port, increasing sensitivity at a signal frequency.

1.3 LIGO Science

The operation of LIGO and extraction of scientific results from LIGO data is car-
ried out by two groups: the LIGO Lab run by the California Institute of Technology
(Caltech) and the Massachusetts Institute of Technology (MIT) and by the LIGO
Scientific Collaboration (LSC) whose members include both LIGO Lab members
and scientists from other institutions (the GEO Collaboration are all members of
the LSC). The LIGO Lab is in charge of the administration of the observatories
while the LSC carries out the scientific activities associated with LIGO. These
activities are split between several LSC working groups and each LSC member is
usually a member of more than one working group. Some of the working groups
carry out investigations into new technologies to be incorporated into future ver-
sions of the detectors. The Detector Characterization Working Group evaluates
the performance of the detectors, tracks down noise sources, provides calibration
information, and works on improving current detector sensitivity. The Data Anal-
ysis Working Group is in charge of computing issues. Finally, there are four upper
limit groups that carry out searches for gravitational waves produced by four dif-
ferent types of gravitational wave sources. The Stochastic Upper Limit Group
searches for gravitational wave backgrounds caused by either the Big Bang or
sources like binary star systems which could be so numerous that signals from
individual sources blend together and cannot be distinguished. The Pulsar Upper
Limit Group searches for single frequency, continuous gravitational waves from
spinning neutron stars. The Inspiral Upper Limit Group looks for neutron star-
neutron star, neutron star-black hole and black hole-black hole inspirals. Finally,
the Burst Upper Limit Group searches for any bursts of gravitational waves less
than a second in duration. These bursts could be produced by supernovae, the
coalescence of objects at the end of inspiral or any other source of short-duration
gravitational waves.

At the time of writing, LIGO, GEO 600 and TAMA300 have taken data used in

scientific analysis. (VIRGO will soon complete the final stages of commissioning.)



Run  Start Date End Date
S1 23 Aug 2002 09 Sep 2002
S2 14 Feb 2003 14 Apr 2003
S3 31 Oct 2003 09 Jan 2004
S4 22 Feb 2005 23 Mar 2005

Table 1.1. Start and end dates for the four LIGO science runs (S1-S4) when data were
taken for scientific analysis purposes.

While no gravitational waves have yet been measured, these studies have set upper
limits on the rates of gravitational waves of different strains for different sources |20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In particular, LIGO has
undergone four science runs (S1, S2, S3, and S4) interspersed with commissioning
work (see Table 1.1). With each science run, there was a dramatic improvement
in the sensitivity and stability of the instruments [2, 3, 4, 5].

LIGO currently is embarking on a year-long run of data taking. Now that the
instruments are near their design sensitivities, the upper limit groups are transi-
tioning their focus from setting upper limits to making detections of gravitational
waves. Hopefully, the direct measurement of gravitational waves is just around the

corner and we are on the edge of the new era of gravitational wave astronomy.

1.4 Thesis Outline

This thesis is concerned with three aspects of the problem of gravitational wave
detection: “conditioning” the data as a step in the detection of burst gravitational
waves, characterization and diagnosis of detector performance based on the data
and devising and implementing a method for recovering gravitational waveforms
from detector data as well as relating these observations to the astrophysics of the
source.

The first project forms a part of the search for unmodeled gravitational wave
bursts. Searches for unmodeled bursts are very difficult to conduct. In other types
of searches such as those for inspiral, periodic, and stochastic gravitational waves,
one is looking for a signal of known character. In the case of searching for bursts,

however, one has no prior information and is simply looking for something in the



data that is not noise. All untriggered burst searches involve identifying times
when the data are inconsistent with the general statistics of the detector noise.
A first step in these searches is to characterize the detector noise statistics and
remove all of the correlations and instrumental artifacts identified, also known as
conditioning the data.

Chapter 2 describes a data conditioning procedure that was developed to re-
move instrumental and environmental artifacts from the data, break the data into
frequency bands and remove correlations from, or whiten, each band. (White data
contain equal power at all frequencies.) Data conditioning is essential for gravita-
tional wave search algorithms that assume that only white noise accompanies the
sought-after signals and can provide a means of identifying a rough spectrum of
events.

The second project involves characterization of the LIGO detectors’ perfor-
mance. These detectors are the first of their kind in terms of both size and com-
plexity. Consequently, there is no prior experience to be drawn from when dealing
with these instruments. Evaluating performance, identifying problems and mak-
ing improvements are areas of intense activity by the Detector Characterization
Working Group and are essential for the scientific success of LIGO.

One detector characterization issue that is of concern is the possible presence of
bilinear couplings which are the modulation of one noise source by another. When
this happens a noise source that is at frequencies outside the band of frequencies at
which LIGO is most sensitive to gravitational waves may be converted to in-band
frequencies and decrease sensitivity. For instance, seismic noise at low frequencies
(< 10 Hz) could couple to resonances of the wires that suspend the mirrors and
thus be converted to noise about these resonance frequencies at a few hundred Hz,
where LIGO is most sensitive to gravitational waves. These nonlinear couplings
are difficult to find since they are invisible to second-order measures like the power
spectrum. Higher-order spectra are sensitive to these couplings but are very com-
putationally expensive to calculate if one is trying to detect these couplings in
large amounts of data. Chapter 3 introduces a computationally inexpensive test
for identifying sections of data that have been influenced by nonlinear couplings.

Finally, the third project pioneered development of an analysis capable of re-

trieving astrophysical information borne by gravitational waves from LIGO data.



Core-collapse supernovae were used as the prospective source in this study because
of the potential for astrophysical discovery through the gravitational waves they
produce. Details of the core-collapse cannot be obtained from electromagnetic ob-
servation. However, gravitational waves which can travel freely from the center
of the collapsing star may be able to carry this information. In order to discover
what the gravitational wave signature tells us about a supernovae we must be
able to recover that signature from the data and then compare it with waveforms
associated with theoretical models of supernovae.

Chapter 4 presents maximum entropy (a regularization approach with a sig-
nificant history in the field of astronomical image reconstruction) as a solution to
the problem of retrieving gravitational waveforms from data produced by networks
of two or more detectors. The second problem of identifying source properties is
addressed by using cross correlation between a recovered signal and a catalog of
waveforms from supernova simulations to see what waveform the recovered signal
most resembles. That waveform is associated with a simulation with properties
that likely mimic those of the source. It was found that the recovered signal carried
information about source properties such as progenitor mass, angular momentum
and angular momentum distribution as well as bounce type. This result is particu-
larly exciting as it is the first demonstration that the promise of gravitational wave
astronomy - the use of gravitational wave observations as a tool of astronomical

discovery - can be realized.



Chapter

Data Conditioning

2.1 Introduction

In the search for gravitational waves, we do not want to be restricted to those
solely from well modeled sources like neutron star inspirals. We also want to keep
our eyes open to the unexpected and to sources that are not as well modeled,
such as core-collapse supernovae and black hole mergers. The Burst Upper Limit
Group has been charged with this difficult task of looking for gravitational waves
of unknown character. The only strategy capable of finding any short-duration
signal that may be present is to search for places where the detector data differ in
a statistical fashion from the noise.

The LIGO data analysis group at Penn State, which participates in the search
for unmodeled bursts, has developed an algorithm for finding sections of data that
have different statistics from the noise. The algorithm is called BlockNormal [35].
BlockNormal assumes that the data are normally distributed and breaks the data
into blocks of time where the data can be described by a single mean and variance.
If the mean or variance of a block of data exceeds a certain threshold, those data
are flagged as possibly containing a gravitational wave event.

It is assumed that the noise that BlockNormal is characterizing has no corre-
lations, or in other words is white. White data are data that have equal power at
all frequencies. However, the data produced by the LIGO interferometers are far
from white (see Figure 2.1). There are many sharp features in frequency (lines)

due to instrumental resonances. For example, the wires suspending each of the
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mirrors vibrate at their resonant frequencies (also known as violin modes since
the wires are vibrating like the strings of a violin). Consequently, the mirrors are
moved at these violin modes, changing the arm lengths and injecting power at
these frequencies into the data. There are features due to the 60Hz oscillations of
the U.S. power grid and there are mirror oscillations that are intentionally injected
for calibration purposes. In addition, the general shape of the noise in frequency
space is dominated by seismic noise which increases with low frequency and an
increase in noise with high frequency that is related to shot noise (caused by the
discrete nature of photons).

In order to remove these instrumental and environmental artifacts and produce
whitened data suitable for BlockNormal, we have designed a data conditioning
procedure. This procedure not only removes lines and whitens the data but breaks
the data into frequency bands. Breaking the data into frequency bands simplifies
the whitening process by reducing the number of features that must be dealt with
at any one time. It also means that when BlockNormal identifies a possible event,
we know the range of frequencies to assign to the event based on the band it was
found in.

The data conditioning procedure is described in detail in the following sections
along with the ordering necessary to simplify successive steps. The procedure was
applied in its entirety to LIGO data from both the second and third science runs
(S2 and S3). A shortened version that excluded line removal was applied to the
data from the fourth science run (S4). The conditioned LIGO data from these

science runs was analyzed by BlockNormal.

2.2 Downsampling

LIGO data are sampled at 16384 Hz, resulting in very large amounts of data that
are computationally expensive to whiten. Therefore, the first step in our data
conditioning procedure is to downsample the data. Downsampling reduces the
sampling rate (number of data samples per second) by a constant factor. The
downsampling applied to the S2-S4 data reduced the sample rate from 16384Hz
to 4096Hz. This significantly reduces the size of the data which can greatly re-

duce the computational cost of the next, Kalman filtering step as well as simplify
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Figure 2.1. Power Spectral Density (PSD) of data from the Hanford, 4-km detector
taken during the third science run (S3). There is a large increase in power at low
frequencies caused by seismic noise as well as many narrow frequency features. Some
of the narrow “lines” are caused by violin modes, which are mirror suspension wire
resonances and their harmonics. Some lines are the result of the mirrors being moved at
certain frequencies for calibration purposes. Most of the remaining lines are power lines
which are harmonics of the 60 Hz oscillations of the U.S. power grid.

the highpass shaping filter described in Section 2.4. Since discretely sampled data
contains information about frequencies up to half the sample rate (half the sample
rate is called the Nyquist frequency), downsampling will throw away some high
frequency information. We therefore select the highest frequency that is of inter-
est (2048 Hz) and downsample the data to set the new Nyquist to that highest
frequency. Discarding information at very high frequencies does not reduce our
chances of seeing gravitational waves much because the detectors are less sensitive
at these frequencies [2, 3, 4, 5].

The process of downsampling involves more than throwing away data points
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to achieve a smaller number of samples. First, a lowpass filter that suppresses the
frequencies above the new Nyquist frequency must be applied to prevent aliasing.
Aliasing can occur when a high frequency component of a signal is under-sampled.
When this happens, there are not enough samples to distinguish between a signal at
a frequency less than or equal to Nyquist and one that is above Nyquist so that the
power at above-Nyquist frequencies is erroneously attributed to lower frequencies
(see Figure 2.2). Once the above-Nyquist frequencies have been suppressed, it is
safe to discard samples or interpolate between them to achieve the new sample
rate [36].

2.3 Line removal with a Kalman filter

For the next step in our process, we wish to remove some of the narrow frequency
features (lines) present in the data. Some lines are caused by processes whose
effects are measured by environmental or other monitors. For example, the 60 Hz
power oscillations that cause the power lines at multiples of 60 Hz in the data
are measured by voltmeters and magnetometers positioned around the detectors.
Removal of these lines, based on these measurements, is discussed in Section 2.6.
The majority of lines, however, are caused by processes that cannot be directly
measured and may not even be understood. To remove these lines we use a Kalman
filter which gives us a way of modeling the process creating each line.

The Kalman filter was originally developed in 1960 by R. E. Kalman [37]. The
filter is a set of equations that allow us to use a simple model of the process to
predict what part of the data is due to the line [38, 39, 40]. It is assumed that
the part of the data to be captured by the filter is caused by a system which
is not directly observed. (We assume that the system causing each line can be
approximated as a weakly damped harmonic oscillator that is excited by random
noise.) At each time step £ the system can be described by a state vector 9[k]. (In
the model of the harmonic oscillator, the state vector could describe the position
and momentum of the oscillator.) The state evolves from one time step to the next
via

Ykl = A-lk — 1] + wk], (2.1)
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Figure 2.2. Aliasing example. Suppose a signal is sampled at a rate of 4 samples per
second (black dots in the figure above). The sampled data only contain information on
frequencies up to the Nyquist frequency which in this example is 2 Hz. If the signal being
sampled is a 6 Hz sine wave, as shown above, the samples will have exactly the same
values as if the signal were a 2 Hz sine wave. The power in the 6 Hz sine will be aliased
or mistakenly attributed to the 2 Hz frequency since there is no way to distinguish the
two frequencies once the sampling has taken place.

where A is the evolution operator matrix determined by the nature of the system
and w/(k] is the white noise that is exciting the system. This noise is also called
the process noise.

The state of the system is unknown, but affects the output of the detector
which is observed. The observable (data) at time step (sample) k is expressed as

the vector z[k| The dependence of the observable on the state can be expressed as:

z[k] = C - ¢[k] + v[k], (2.2)
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where C' is a linear transformation called the measurement operator and v[k] is
an additional, white noise background. This noise background is known as the
measurement noise, which in the case of LIGO data is primarily caused by seismic
noise at lower frequencies and laser shot noise at higher frequencies. Approximat-
ing the measurement noise background wv[k] as white would not be valid if the
observable z[k] was the data as produced by the detectors. (LIGO data minus a
line are far from white.) However, if we take as our observable the data restricted
to a small region in frequency about the line, as described in Section 2.3.1, the
background is approximately white. The C - 4[k] term of Equation 2.2 is the part

of the observable due to the line and is the part that we wish to isolate and remove.

The process and measurement noise, w[k| and v[k|, are both white and zero-

mean and are therefore completely characterized by their covariance matrices

W = FElw-w'] (2.3)
V = E[v-v"], (2.4)

where E[-] denotes the expectation operator.
Suppose we have an estimate zﬁ[k — 1] of the system’s state at the sample & — 1.

The error in this estimate is
élk —1] == Y[k — 1] — Pk — 1]. (2.5)

The variance of the error is
Plk—1]:=FE[ée[k—1]-&"[k—1]]. (2.6)

The state estimate can then be evolved to the next time sample k by using the

evolution operator
Plk] = APk —1]. (2.7)

Because we started with an estimate of the state that had some error, there will

be error in tﬁ[/ﬁ] due to the error in the previous state estimate and due to process
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noise. The total error in 4)[k] is defined to be
élk] := [k] — p[k], (2.8)
with a second moment of the error

Plk] = E|[é[k]- €& [k]]
= A-Plk-1]-AT+W. (2.9)

Now we can calculate the observable Z[k| based on the estimated, evolved state
P[k]
Z[k] = C - k). (2.10)
Note that, while Z[k] is derived from an estimate of the state and therefore contains
some error, it is free of the background measurement noise present in the measured
observable z[k]. Thus Z[k| is an estimate of the part of the observable due to the
line, the part we wish to isolate and remove.

We can now calculate a corrected estimate of the state 1&[1-3] based on the

difference between Z[k] and z[k]
P[k] = p[k] + K[k - (2[K] - 2[k]), (2.11)

where K is the Kalman gain, described below. This corrected state estimate has

an associated error and second moment of the error P[k] where, according to [41],

Plk] = (I—-K[k]-C)-Plk]-(I— K[k]-C)" + K[k] -V - K[k]"
= (I — K[k]-C)- P[k]. (2.12)

The Kalman gain is a linear operator that minimizes the error in the state. It
is found by minimizing tr P[k] which is a measure of the total error in the corrected

estimate of the state. According to [39], this results in
K[k] = P[k]-CT/(V +C - P[k]-C"). (2.13)

The procedure for finding the portion of the observable due to the line, Z[k], is
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as follows:
Begin with an estimate of the initial state 4)[0] and initial second moment of

the error 13[0] A reasonable choice is to set 1&[0] equal to an array of zeros and

P[0] = W. Now for k =1 to the length of z:
1. Evolve the estimate of the state via Equation 2.7 and find the error second

moment using Equation2.9.
2. Calculate Z[k] using Equation 2.10.
3. Find the Kalman gain via Equation 2.13.
4. Update the state and error second moment with Equations 2.11 and 2.12.

We apply a Kalman filter to the lines that are within the frequency band that
will be selected when the data are broken into frequency bands. In some cases,
lines just outside the frequency band are also removed so that they will not be
aliased into the band of interest in the process of restricting the data to a band
(see Appendix A). Kalman filtering is applied separately to each line or small

group of lines if they are closely clustered in frequency.

2.3.1 Application to Narrow-Band LIGO Features

As mentioned in Section 2.3 the detector data are not appropriate to use as the ob-
servable z in the Kalman filtering process. The data minus the line being removed
are not white as is assumed for the background process noise. In order to get an
observable that consists only of the line and an approximately white background,
it is necessary to restrict attention to a narrow frequency range about the line.
For each line or set of lines, a small frequency band is chosen and designated
by two numbers: f., the central frequency, and Af, the width of the band. The
band then spans the frequencies f, — Af/2 to f. + Af/2. The band must include
the line frequency or frequencies fy (fo is a vector of frequencies in the case of
multiple lines) and should be chosen so that the power spectrum within the band
is relatively flat and does not include any lines other than those being removed (see
Figure 2.3). Typical values we use for Af are 8-16 Hz. A list of Kalman filtered

lines along with the chosen values of f. and Af is given in Appendix A
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Figure 2.3. Diagram showing the specification of frequency-related variables needed
for Kalman filtering. In this case, we want to filter the two lines near the center of the
diagram. fy is a two element vector that contains the central frequencies of these two
lines. f. and Af are used to specify a frequency band that includes the lines of interest
and some of the white background but excludes any other frequency features.

To restrict the data to the chosen band, the data are shifted down in frequency
(heterodyned) by f. Hz. This shift is done by multiplying the full data, g[k], by a
complex exponential with frequency f,. That is for £k =1 to the length of g[k]

g'[k] = 2 -exp (—2mikf./fs) glk], (2.14)

where ¢'[k| are the shifted data and f; is the sample rate of the original data. After
the shift, f. is at zero frequency and both f.+ Af/2 and f. — Af/2 are shifted to

Af/2.
Next, the shifted data are downsampled to a new sample rate of Af. This
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downsampling throws out all frequencies outside the band of interest. The down-

sampled data, labeled z, are complex. We construct the real vector series z[k]:

_ [ R(2)[K]
z[k] = ( S()[K ) : (2.15)

which is the observable that undergoes the Kalman filtering procedure.
After Kalman filtering is done and the line component of the observable, Z[k],
is obtained it must be put through a process inverse to that described above before

it can be subtracted from the data. First, Z[k] is turned into a complex series:
Zlk] = Z[1, k] + - Z[2, K], (2.16)

where Z[1, k| is the element from the first row, kth column of 2 and 2Z[2, k] is from
the second row, kth column (see Equation 2.15).

Then Z[k] is resampled to a new sample rate f,, where f; is the sample rate
of the data prior to Kalman filtering. These resampled data, denoted g'[k], are
shifted up in frequency by the amount f., the central frequency of the band used
to find the observable:

glk] = exp (2mik f./ fs) §'[k]. (2.17)

Finally, the real part of the shifted data is taken:
glk] = Rglk]. (2.18)

g[k] is now the part of the data due to the line. Subtracting g[k] from the data,

g[k] removes the line from the data, as shown in Figure 2.4.

2.3.2 Calculating A, C, W, and V

Before we can apply the Kalman filter, we must find the values of the matrices A,
C, W, and V. Detailed derivations of the expressions given below may be found
in [39].



19
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Figure 2.4. Line removal via Kalman filtering in the 192-320 Hz band of data taken
during the third science run (S3) with the Hanford 4-km detector. The two lines at 240
and 300 Hz that are not removed are power lines that will be dealt with in the later, line

regression step.

We can write the state vector at each time sample as a real vector such that
R(y[k])
Ylk] = ( o . (2.19)
S(¢[k])

The evolution operator A, which controls the evolution of the state vector accord-

ing to
Ylk+1] = A-plk] + wlk], (2.20)

can be calculated via A = exp(A’/Af) where exp denotes matrix exponentiation



20

and

P e ) I
—we + woy/1 — 1/(4Q?) —wy/(2Q)

The angular frequencies wy = 27 fy and w, = 27 f, are the frequency of the line and
central frequency of the band about the line that we use in creating the observable,
while @ is a damping constant. () and f, are found for each line by calculating
high resolution power spectra for each detector. f; is the frequency corresponding
to the maximum of the line and @) is measured as fy divided by the width of the
line at half the maximum. f; and @ for each Kalman filtered line are given in
Appendix A.

If multiple lines are being removed together, the expressions for the state and

evolution operator become

S(t1)
U= : (2.22)

R(¢w)

\ S(¢w)

and
A,y
A= : (2.23)
Apn

where 97 ...¢y and Ay ... AN are the state and evolution operators, respectively,
for each of the individual lines.

Next, is the measurement operator C' which relates the state to the observable
z[k] = C - Y[k] + v[k]. (2.24)

We let the state be the shifted amplitude of the mode causing the line so the

measurement operator C' is just the identity matrix. For multiple lines, C is a
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matrix of repeats of the identity matrix

czwl...cN):(; 0! g), (2.25)

The measurement noise covariance matrix V is found by measuring the average
value of the power spectrum of the observable z away from the line. This average
value, P,,, is equivalent to the total measurement noise trV. We find P, by
summing the power spectrum over frequencies more than 2 Hz away from the
line or lines being removed. Also, since the observable z is a vector with real and
imaginary parts separated, we take the power spectrum of the two parts separately

and then add the means of the two spectra to get P,,. The measurement noise

_ 1 0
v=1p, . (2.26)
2™\ o1

The process noise covariance matrix W, on the other hand, is related to the

covariance matrix is then

power spectrum at frequencies dominated by the line P, via the expression [41]

4Q*ttW

P(w) = w2 + (2Q(w + we) — wo(4Q? — 1)1/2)2°

(2.27)

The process noise covariance matrix is found by integrating both sides of Equa-
tion 2.27 over the range of frequencies where the line is dominant. The expression
on the right hand side is so strongly peaked about wy that integrating over the
line frequencies is approximately equivalent to integrating over the entire range
from w = —o¢ to w = oco. Also, since P, is the power spectrum of the observable
z, which are data that have been shifted down in frequency by the amount w,,
the value of w, in Equation 2.27 is zero. The integration of the right side is thus

simplified and results in

/ P(w)dw = (27Q ) 1 W (2.28)

When evaluating this expression, it is important to remember that the frequency
shift used in producing the observable changes the values of wy and Q. (wo(shifted)
= wp — w,, Q(shifted) = (fo — f.)/Af). It is also important to make sure that one
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calculates a power spectrum that preserves the absolute magnitude of the signal
creating the line.

Once the power spectra for the real and imaginary parts of the observable z
have been found, each is integrated over the line-dominated frequencies. This is
done by multiplying the magnitude of the power spectra at each frequency by the
frequency bin width and then summing. P; is computed as the mean of the real
and imaginary integrated power spectra. trW is found via Equation 2.28 and the

process noise covariance matrix, W is

_wOP[ 10
W_47TQ(0 1). (2.29)

If multiple lines are being filtered at once, W becomes

Wi
W = , (2.30)
Wi

where Wi ... Wy are the process noise covariance matrices for each of the indi-
vidual lines.

It is important to note that W, as a measure of the power contained in a line,
is a quantity that can vary greatly over time. The resonances that produce the
lines can be excited over short timescales and lines that have large amplitudes
at some times can be completely absent at others. To have an accurate value
for the process noise it is important to measure it periodically. For the S2 and
S3 data, following collaboration specified protocols [42, 43], the process noise was
calculated on segments of data whose start times were spaced 6370 seconds apart
and were 300 seconds long. When Kalman filtering the lines from a segment of
data, we select the W measurement from the segment with a midpoint closest to

the midpoint time of the data we are filtering.
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2.4 Shaping Filter

As can be seen in Figure 2.1, there is a huge amount of power at low frequencies.
These frequencies are lower than the lowest edges of any of the frequency bands
we are interested in (128 Hz for S2, S3 and 96 Hz for S4) but this high power can
still cause problems. During the basebanding step when the data are restricted to
a frequency band, as described in Section 2.5, the low frequency part of the data
gets shifted to high frequencies and then the data are downsampled. If the power
at low frequencies is not reduced before basebanding, aliasing can occur when this
downsampling takes place. The next step in our data conditioning procedure is
application of a filter that reduces power at low frequencies.

Generally speaking, a filter is a system that modifies the frequency structure
of a signal, amplifying or suppressing some frequencies relative to others. A filter
can be expressed as either a series of numbers z[n|, where —oco < n < oo, or in the
frequency domain as a frequency response X (w), where —7 < w < 7. The series
and frequency response representations are related to each other via the discrete

Fourier and inverse Fourier transforms:

o0

X(w) = Z z[n)e”™", (2.31)
and
= % /_WX(w)ei“’"dw. (2.32)

Applying the filter in the time domain involves convolving the data d[n] with the

filter sequence z[n| to obtain a filtered signal y[n] or
y[n] = d[n] * z[n] = Z d[k]z[n — (2.33)
k=—00

Convolution in the time domain is equivalent to multiplication in the frequency do-
main so filtering can also be performed by multiplying the filter frequency response

by the Fourier transform of the data or

Y(w) = D(w)X (w), (2.34)
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where Y (w) and D(w) are the Fourier transforms of the filtered data and original
data, respectively.
If the data being filtered are zero everywhere but a single sample p where its

value is one it is known as a unit impulse signal, written as

d[n] = { (1) Z;i : (2.35)

d[n] = é[n — p]. (2.36)

Filtering the unit impulse signal with the filter z[n] results in

ylnl = Y o[k — plan — k] = z[n + p, (2.37)

k=—o00

which is simply the filter sequence delayed by p samples. For this reason, x[n] is
also called the impulse response of a filter. During filtering, any sample of data will
be smeared over a number of samples equal to the length of the impulse response.

The shaping filter that reduces the power at low frequencies should have a
frequency profile that changes at the lowest frequency of interest f; (f; = 128 Hz
for S2, for example). Above f;, the filter should leave the data as unchanged as
possible and below f;, the power of the data should be reduced so that it is less
than any frequency above f;. At the same time, we want to use a filter that is
as short as possible to avoid smearing any burst signals over a large number of
samples, making them harder to detect.

The best filter for our purposes would be an ideal highpass filter, in other words,

a filter whose frequency response is zero below the cutoff f; and one above it

)0 f<f
X(f)—{1 e (2.38)

As stated above, applying the filter is equivalent to multiplying the filter’s fre-
quency response X (f) by the Fourier transform of the data D(f) so that the
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filtered data Y (f) = X(f)D(f) and

_ 0 f<h
Y(f)—{ DY) foh (2.39)

The ideal highpass filter completely suppresses frequencies below f; and leaves
those above f; unchanged.

Unfortunately, this type of ideal filter with its infinitely sharp cutoff is not re-
alizable. Since the impulse response can be calculated from the frequency response
via

xln] = % /7r X (w)e™™dw, (2.40)

where w = 27 f/fs and f; is the sample rate, the impulse response of the ideal

filter is
1 —wy . ™ .
z[n] = Py [/_ e"“"dw —i—/w e“""dw} (2.41)

™ 1

—sin(wyn)

xln] = (2.42)

™
for all —oco < n < co. The impulse response of the ideal filter is infinitely long.
What is worse, x[n| is not absolutely summable, that is |z[n]| summed over all n
is not less than infinity. This means that when we try to build our ideal filter, it
will not converge uniformly for all values of w. To see this, consider the Fourier

transform of our ideal filter impulse response:

X(w) = Z z[n]e ™" (2.43)
= i %ﬁ”l")e—iw". (2.44)

If we let Xp/(w) be the sum of a finite number of terms, or

Xulw)= 3 5m) ion, (2.45)

™
n=—M

Figure 2.5 illustrates the behavior of the sum as M increases. With increasing
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Figure 2.5. Result of summing different number of terms of Xs(w) from Equation 2.45
with w; = 0.5m. As M increases, the frequency response Xjs(w) (dark line) approaches
that of the ideal highpass filter (light line). The transition at w; = 0.57 becomes sharper
with higher M but the magnitude of the first ripple on either side of the transition does
not decrease.

M the transition at w = w; becomes sharper and the ripples near w = w; become
more rapid. In fact, the magnitude of the first ripple on either side of w; does not
decrease with larger M, a behavior known as the Gibbs phenomenon.

We now see that if we are to apply a real-world highpass filter having a finite
length, we are going to have to deal with imperfections in its frequency response.
The frequency response will have three regions, a stopband where the response is
nearly zero, a passband where the response is close to one and a transition band
where the response transitions smoothly between the two extremes. A frequency
response with these bands is shown in Figure 2.6. Plus, there will be some ripple

in both the passband and stopband. The goal is to build a shaping filter whose
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Figure 2.6. Frequency response of realistic highpass filter. The frequency response
consists of three frequency regions: a stopband running from 0-0.47 where the response
is close to zero, a passband running from 0.67-7 where the response is close to one and
a transition band where the response transitions smoothly between the two extremes.
The stopband has an allowed error (maximum ripple height) of 0.02 while the passband’s
allowed error is 0.1. This filter was designed using the Parks-McClellan algorithm.

passband begins at f;. The transition band should be as wide as possible to lower
the filter length but it cannot be too low or the high power at low frequencies
will not be suppressed. Also, the filter must be designed so that the ripple is
small, especially in the stopband. We design the necessary highpass filter using
the Parks-McClellan algorithm. This algorithm returns an optimum filter for a
given transition band and given errors in the stopband and passband [36].

The effect of the shaping filter on S3 data from the Hanford 4-km detector is

shown in Figure 2.7.
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Figure 2.7. The effect of the shaping filter on third science run (S3) data from the
Hanford 4-km detector. The power below our lowest frequency of interest (128 Hz) is
well suppressed by the filter.

2.5 Basebanding

Trying to remove all of the artifacts and correlations from the data at all of the
frequencies where LIGO is sensitive to gravitational waves would be a difficult task
and require very long and complex filters. The necessary filters could decrease our
sensitivity to gravitational wave bursts by smearing the signals out over a large
number of samples. To make the task of whitening simpler, requiring shorter
filters, we break the data into frequency bands, each containing a smaller number
of features requiring removal. The bands can also be chosen to avoid artifacts
that are difficult to remove. For example, the data from S2-S4 were broken into
frequency bands that avoided the violin modes (resonances of mirror suspension

wires) and their harmonics (see Appendix B). A second advantage to breaking the
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data into separate bands is that any candidate gravitational wave events found in
a band can be automatically associated with a narrow range of frequencies.

We call the process of breaking the data into frequency bands basebanding.
The goal of basebanding is to completely restrict the data in frequency to a band
in the original data. After basebanding, the interval of zero frequency to Nyquist
frequency is completely taken up by a band of interest. For example, if we want
to restrict the data to a band running from 128 Hz to 256 Hz, the basebanding
procedure will return data with these frequencies shifted to 0 Hz - 128 Hz and with
a sample rate of 256 Hz.

Basebanding has a number of steps and the order in which they are applied is
very important. This procedure must be carried out for each frequency band of

central frequency f. and width Af.

1. Shift by f. - For each band with central frequency f. and frequency width
Af, heterodyne (shift down in frequency) the data by f.. For original data
g[k] and shifted data ¢'[k]

g'lk] = exp (—2mik fo/Af) glk] (2.46)

for k = 1 to the length of g[k]. This will have the effect of shifting the
data down in frequency by f. so that the band of interest will be centered
at zero frequency. To see how this shifting works, consider data consisting
of a single frequency wy or glk| = exp(wuwok). Applying Equation 2.46 with
2nfo/Af = w, will result in ¢'[k] = exp(—ww.k) exp(wok) = exp(2(wo — we)k)

or data shifted to the frequency wg — w,.

2. Downsample - Downsample to move the Nyquist frequency to Af. This will
make the design of the filter used in the next step much easier since now the
filter’s transition band as a fraction of the Nyquist frequency will be much

larger.

3. Lowpass - A lowpass filter (having a frequency response near one below
a cutoff and near zero above a cutoff frequency) is applied with a cutoff
frequency equal to A f/2, removing the frequencies outside the desired band

(see Figure 2.8). Therefore, by first shifting the data in frequency, we are
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able to effectively bandpass with a lowpass filter, which is easier to design.
The lowpass filters used for the S2-S4 data were created using the Parks-
McClellan algorithm (see Section 2.4). The filters we used are different for
each frequency band, but are the same across detectors. The differences are
required by both the differences in frequency width of the bands and the
features that lie outside the bands that necessitate different falloff rates so
that they will not be aliased into the band. The filter parameters are given

in Appendix B.

4. Shift up in frequency by half the bandwidth - Shift the data up by the
frequency equal to Af/2. This shift will move the low end of the desired
band to zero frequency and the high end to the frequency equal to Af. For
g[k] equal to the data before shifting and ¢'[k]| equal to the data after

g'[k] = exp(2mik/4)g[k]. (2.47)

Now the entire range of available frequencies, from zero to Nyquist is taken

up by the band of interest (see Figure 2.8).

5. Take the real part - Finally, take the real part of the complex data. The
complex part will be approximately zero after the previous step. Taking the
real part will result in a real time series just as the data before basebanding

was real.

2.6 Line Regression

The next step in our data conditioning procedure is to remove the lines that were
not removed via Kalman filtering. These lines can be removed by building fil-
ters that capture the correlations between the detector output channel and other
channels such as environmental channels that monitor the interferometers’ sur-
roundings. Power lines and calibration lines, for example, can often be regressed
from the data using filters applied to other channels and then subtracting the fil-

tered channel data from the detector output data. The calibration lines are, of
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Figure 2.8. The above three plots show the basebanding process performed on the
192-320Hz band of Hanford-4km, S3 data. The top plot is a power spectra of the pre-
basebanded data from 192-320 Hz. The middle plot shows the effect of the lowpass filter
applied to the shifted, resampled data. The lowpass filter suppresses the features outside
the desired band. Finally, the bottom plot shows the basebanded data which ranges in
frequency from 0-128 Hz.

course, correlated strongly with the channel which measures the excitation applied
to the mirrors to create the calibration lines. The power lines at multiples of 60 Hz
that are caused by the AC oscillations of the power grid are correlated with chan-
nels from environmental monitors like voltmeters and radiometers and sometimes
with optical channels.

To remove the power and calibration lines, the environmental or excitation
channel is first resampled to a Nyquist frequency of 2048 Hz and then put through
the same data conditioning steps as the detector output including application of

the shaping filter and basebanding but excluding Kalman line removal.
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For each band, an ARX model is found that relates the basebanded detector
data to the basebanded environmental or excitation data. An ARX model has the
form A(q)y(t) = B(q)u(t — k) + e(t) or

y[t]+a[l]y[t—1]+. . .4+a[n]y[t—n] = b[1|ult—k]+. . .+b[m]u[t—k—m]+e[t], (2.48)

where y[t] is the output data, u[t] is the input data, e[t] is white noise, k is a delay
parameter, the a[l]...a[n] relate current output data to past output samples and
the b[1]...b[m] relate input data to output data [44]. In the case of line removal,
y[t] is the basebanded detector data and wu[t] is the basebanded environmental or
excitation data. Since we are only interested in how detector data are related to
excitation or environmental data and not in how they are related to past detector
data samples n = 0, there are no a coefficients. We also assume there is no delay
between the channels so £ = 0.

Once the data have been fit to the ARX model and the least squares estimate
of the b coefficients have been found, the power or calibration lines can be removed
by first filtering the basebanded environmental or excitation data with the b coeffi-
cients and then subtracting the result from the detector data or d[t] = y[t]—b[n|*u[t]
where d[t] is the basebanded detector data with the lines removed.

Appendix C gives a list of the lines removed via regression for the three inter-
ferometers along with the regression channel used and the filter order m. As with
the process noise measurements, the necessary regression filters change with time.
Therefore, these filters were also calculated on 300 seconds of data spaced every
6370 seconds and the filters from the closest segment were used for a given data
stretch.

The effect of line regression on the 192-320 Hz band of Hanford 4-km, S3 data

is shown in Figure 2.9.

2.7 Final Whitening

Now that we have mostly removed the prominent lines and other artifacts from the
data, all that remains is to smooth out any frequency features that have survived

thus far and remove any general increases or decreases in the noise with frequency.
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Figure 2.9. The effect of line regression on the 192-320 Hz band of Hanford 4-km, S3
data using a voltmeter channel. The two power lines at 240 and 300 Hz are greatly
reduced. This plot shows basebanded data but the frequencies have been mapped to
corresponding frequencies in non-basebanded data for ease of comparison.

This last step in our data conditioning procedure is accomplished with a final
whitening filter.

The final whitening filter is created by finding an AR model for the basebanded,
line-filtered data and using the model as a filter to remove remaining features. AR

is a linear difference equation which has the form A(q)z(t) = e(t) or
z[t] + a[l]z[t — 1] + a[2]z[t — 2] + ... + a[n]z[t — n] = e]t] (2.49)

[44]. The use of this model assumes that elements of the time series are made
up of a component which can be predicted from past behavior and a white noise

component. If the time series is filtered with the AR coefficients, the result is just
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Figure 2.10. The effect of whitening on the 192-320 Hz band of Hanford 4-km, S3
data. The general increase in power with frequency has been flattened. This plot shows
basebanded data but the frequencies have been mapped to corresponding frequencies in
the non-basebanded data for ease of comparison.

the white noise component, e(t). For the filter applied to the S1-S4 LIGO data,
we set the number of a coefficients, n to 60 for each band. This choice of order was
made by noticing that an increase in order above 60 did not result in substantially
better whitening.

Before calculating the whitening filter, it is important to remove a small piece
of data from the beginning and end of the data to avoid startup and ending tran-
sients (described in Section 2.8). These are created by previous steps in the data
conditioning process.

Once again, the whitening filter was found using 300 seconds of data every
6370 seconds and the filter from the nearest segment is used to whiten data. An

example of whitening is shown in Figure 2.10.
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2.8 Startup and Ending Transients

Several of the data conditioning steps involve filtering the data. Filtering usually
involves zero padding, or adding zeros to the beginning of the data so that the
filtered data is of the same length as the initial data. While zero padding preserves
length, it can cause the first samples of the filtered data to behave strangely. (For
example, these samples can have abnormally large or small amplitudes). As a
result, it is a good idea to discard these affected samples at the end of the data
conditioning procedure.

To find the length of this startup transient, we calculate the length of the
impulse response of the data conditioning procedure. The impulse response is
found by applying the data conditioning procedure to a time series with a one for
its first sample and all other samples equal to zero. The data conditioning filters
will smear out the one in the first sample. The number of nonzero samples in the
conditioned time series will be equal to the number of samples influenced by the
zero padding. There is also an end transient caused by filtering during basebanding.
The length of this transient can be found by applying data conditioning to a vector
with a unit impulse for its last sample. When calculating the impulse responses,
Kalman filtering and line regression are turned off since these steps do not involve
direct filtering of the data but instead apply filters to copies of the data or other
channels that are then subtracted from the data.

The startup and ending impulse responses for S3 data conditioning on the 192-
320 Hz band are shown in Figures 2.11 and 2.12. The lengths of the transients
for all bands for S3 are given in Table 2.1. According to this table, removing a
few tenths of a second from the beginning and end of conditioned data should be

sufficient to avoid data conditioning transients.

2.9 Effectiveness of Data Conditioning

Data conditioning involves many choices, from what lines will be removed with
a Kalman filter to what environmental or interferometer channels will be used in
regression to filter orders. Poor choices could result in ineffective data conditioning.

Plus, line strength measurements as well as filter calculations are done on data
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Figure 2.11. Startup impulse response for S3 data conditioning on the 192-320 Hz
band as well as startup transient for conditioned data. The impulse response was found
by applying data conditioning to a vector with one as its first element and zeros for all
other elements. Kalman filtering and line regression were both turned off. The impulse
response is the same length as the startup transient for the filtered data. Both the
impulse response and filtered data have been normalized so that their largest samples
are equal to one for ease of comparison.

segments spaced every 6370 seconds and these filters are applied to data away from
these segments where the noise characteristics may have changed. It is important to
know if applying the data conditioning procedure is actually working and producing
nearly white data or if there is a failure either as a result of a poor parameter choice
or a bad section of data that should not be used in an analysis.

The simplest way to see if data are being whitened is to look at a power
spectral density (PSD) plot and see if the conditioned data has a PSD that has
nearly the same magnitude for all frequencies. Plots showing the effectiveness of

data conditioning on a segment of S3 data from the Hanford 4-km detector and all
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Ending Transient, 192-320 Hz Band
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Figure 2.12. Ending impulse response for S3 data conditioning on the 192-320 Hz
band as well as ending transient for conditioned data. The impulse response was found
by applying data conditioning to a vector with one as its last element and zeros for all
other elements. Kalman filtering and line regression were both turned off. The impulse
response is the same length as the ending transient for the filtered data. Both the impulse
response and filtered data have been normalized so that their largest samples are equal
to one for ease of comparison.

frequency bands are shown in Appendix D. Looking at PSDs by eye, besides being
merely qualitative, would be impossibly time consuming if applied to a significant
fraction of the huge amount of data produced by the three LIGO detectors. We
need a quantitative measure of data conditioning performance that can be applied
quickly.

A simple measure of data conditioning effectiveness has been proposed in [45].
For this method, the Rayleigh statistic R is calculated before and after data con-
ditioning is applied. The Rayleigh statistic is a measure of the flatness of the

PSD and is calculated as Rpsp = opsp/itpsp where opsp and pupsp are the vari-
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Freq. Band (Hz) | Startup Imp. Resp. | Ending Imp. Resp.
Samples  Seconds | Samples  Seconds

128 - 192 27 0.2109 26 0.2031

192 - 320 36 0.1406 35 0.1367

384 - 512 34 0.1328 33 0.1289

512 - 640 34 0.1328 33 0.1289

704 - 832 43 0.1680 42 0.1641

832 - 1024 59 0.1536 58 0.1510

1065 - 1365 64 0.1067 63 0.1050
1408 - 1708 64 0.1067 63 0.1050
1758 - 2048 62 0.1069 61 0.1052
890 - 940 23 0.2875 22 0.2200

Table 2.1. Startup and ending impulse response lengths for S3 data conditioning and
all bands. The impulse responses were found by applying data conditioning to a vector of
all zeros except for a unit impulse at the first (startup) or last (ending) sample. Kalman
filtering and line regression were both turned off.

ance and mean of the PSD, respectively. The flatter the PSD, the smaller Rpgsp.
Therefore, a figure-of-merit (FOM) for the data conditioning is

R ’ 7 ’
FOM = PSD' _ OpsSD /,UPSD ’ (2'50)

Rpsp OpSD / HPSD

where PSD is the power spectral density calculated on data that has only been
treated with the shaping filter and then basebanded and PSD' is data that has
undergone the entire data conditioning process. If full data conditioning including
Kalman filtering, line regression and whitening produces data that are whiter than
data that have only been restricted to the same frequency band, then FOM < 1.
The FOM was calculated for data from all three LIGO detectors taken during
S3 and for all frequency bands used in S3. For each detector, the data that passed
quality cuts recommended by the Detector Characterization Working Group [46,
47, 48, 49] (the cuts ensure the detector was in a good, operating state) were
broken into 300 second long non-overlapping segments. Any segment less than 300
seconds long was discarded. Data conditioning was applied to each segment and
the FOM calculated. The percentages of S3 segments for which data conditioning
was successful are shown in Table 2.2. For most segments, the FOM was less than

one.
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Freq. Band (Hz) % FOM < 1
Hanford 4-km Hanford 2-km Livingston 4-km
128 - 192 100.0 100.0 99.9
192 - 320 99.6 100.0 99.8
384 - 512 99.6 99.7 98.2
512 - 640 99.6 100.0 98.6
704 - 832 96.1 97.0 98.7
832 - 1024 100.0 100.0 100.0
1065 - 1365 100.0 100.0 100.0
1408 - 1708 100.0 99.9 99.0
1758 - 2048 100.0 98.5 87.5
890 - 940 81.4 99.6 100.0

Table 2.2. Percentage successful data conditioning. Shown above are the percentages of
S3 data segments for each detector and frequency band where the figure-of-merit (FOM)
was less than 1. A FOM less than 1 indicates that the Kalman filtering, line regression
and whitening portions of data conditioning were successful in producing whiter data.

Figures 2.13 and 2.14 show the FOM per segment and a histogram of FOM
values for the 192-320 Hz band of the Hanford 4-km detector. Corresponding plots
for all frequency bands and detectors are given in Appendix E. In the 192-320
Hz band for the Hanford 4-km detector, the FOM was less than one for 9,814 (or
99.6%) of the 9,854 segments tested in S3. Looking closely at the remaining 40 seg-
ments with high FOM values, data conditioning was found to fail for two reasons.
In the first 31 segments, the regression of power lines failed and the strength of a
power line was increased. Usually this occurred when the 240 Hz line disappeared
or mostly disappeared from the data but did not disappear from the regression
channel. The disappearance of the line may have been caused by fans, motors,
or heaters switching on or off and changing the magnetic environment around the
mirrors, for example. This change in relationship between the data and regression
channels occurred sometime between these segments and the playground segment
on which the regression filter was calculated. To fix the power line regression,
filters would have to be calculated closer to these segments. The remaining 9 seg-
ments with high FOM values had “glitches” which are very brief (usually just a
few samples) very high amplitude pulses in the data of instrumental origin. Most
data segments containing glitches are excluded by data quality cuts but the ones

in our 9 segments had evaded these cuts. The data conditioning procedure cannot
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Hanford 4-km, 192-320 Hz Band

2.5

15

FOM

0.5

4000 6000 8000

Segment

0 2000
Figure 2.13. FOM per segment for the Hanford 4-km, S3 data, 192-320 Hz band. The
segments for which FOM > 1 are distributed throughout the run.

remove the effects of glitches and these segments should be avoided (or vetoed) by

any analysis looking for gravitational wave bursts.
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Figure 2.14. Histogram of FOM values for the Hanford 4-km, S3 data, 192-320 Hz
band. Most segments have FOM < 1 but there is a tail of FOM values that extend
above 1.



Chapter

A Test for Non-Linear Couplings

3.1 Introduction

While second order tools such as the power spectral density (PSD) function are
useful tools for discovering many interesting features present in data, there are
many important features to which these tools are blind. As an example, consider
an input, such as seismic noise, n; affecting the output z; of a system. The
relationship between the input and output may be a simple linear one. On the
other hand, the size of the coupling, or gain, between input and output may
depend upon the magnitude of the input itself. Furthermore, the dependence may
not involve the size of the present input but the size of the input in the past. A

model for this nonlinear situation is given by

T; = 0+ ta1n2 IRE (nj +njn;_x tan @) (3.1)
where z; and n; are the current outputs and inputs respectively, n,_; is an input
that occurred k samples into the past, and 6 € [0, 7/2] is a parameter that controls
the size of the nonlinearity. The (1 + tan?#)~'/2 term is included to maintain unit
variance.

If the n; are assumed to be white, the x; will be white also since the auto-
correlation function C; = 1/T Z?:O x;xj—; is zero for all values of [ # 0. Therefore,
second order measures like the PSD contain no information about this nonlinearity.

What is more, when 6 is close to /2 so that tan f becomes large, the third order
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moment also goes to zero. This results in a problem: can one discover this type
of nonlinearity without calculating many, computationally expensive, higher order
moments?

Despite the fact that the power spectral density of z is white, it is still the case
that z; is related to z;_; and x;4. If there were no correlation between the z; and
a threshold X applied, the above threshold points would be Poisson distributed.
In other words, the number of above-X points N within any interval 7" will be
given by N

P(N|T,7) = %e” (3.2)
where 1/7 is the event rate parameter. The time correlations present in the data
produced by Equation 3.1 will lead to clustering in time of the above-X points and
therefore they will not be Poisson distributed. This observation suggests a test:
determining whether the type of nonlinearity described by Equation 3.1 is present
is equivalent to determining if the data points above a threshold X are or are not

Poisson distributed.

3.2 Description of Test

Given some data, we want to discover if there is evidence of non-linear couplings.
To accomplish this, we test the null-hypothesis that the time distribution of events
above a threshold X, drawn from whitened data, are Poisson distributed. If the null
hypothesis is rejected, we conclude that there is evidence for non-linear couplings.

First, the data must be whitened. A procedure for whitening is described in
Chapter 2. Once the data are white, the first step in determining if the time series
is free of inter-sample correlations is to pick a threshold X and select the points
of the time series with values greater than X. As previously stated, if the series is
indeed made up of independent samples, the probability of the number of above-X
points /N within any interval 7" will be Poisson and given by Equation 3.2.

The second step in the test is to consider the set of intervals between successive
above-X points (At). If these points are Poisson distributed, the probability that
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there are no above-X points in the time interval At is
P(0|At,T) = e AU, (3.3)

Let Q(t|T) be the probability that the interval between threshold crossings is t.
The probability that there are no threshold crossings in an interval At is equal to

the probability that the interval between threshold crossings is At or larger:

P(O|AL 7) = /A 0: dtQ(t)r), (3.4)
or d
TP 01AL ) = —Q(at) (3.5)

Therefore, the intervals between above-X points will have an exponential distri-
bution Q(At|T) = exp(—At/T)/T.

The problem of determining if a given time series is without correlations is now
simplified from calculating many moments of high order to determining if the set
of At for a given X follows an exponential distribution. If we bin the At, we can
use the x? test [50] to compare the number of At in each bin to what would be
predicted based on an exponential distribution.

The intervals are first histogrammed into Np bins. We set the lower edge of
the first bin by to zero. The other bin edges b, are chosen so that if the At follow
an exponential distribution, there will be an equal number in each bin (each bin is

equally probable) or

by, 1
/b dt e~ AT = a (3.6)
n—1

so that b, = —7 In(exp(—b,_1/7) — N5'). The expected number of At in each bin
(1), written as E;, is equal to 1/Np times the total number of A¢. On the other
hand, the number of At observed to fall in each bin (%) is referred to as O;. Finally,
the quantity x? is calculated via:
Np
O; — E;|?
=y 10— EF = | (3.7)

=1

If the set of At intervals agrees with the expected, exponential, probability dis-
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tribution, x? will be approximately equal to the number of degrees of freedom v.
The number of degrees of freedom is defined as the number of independent ob-
servations of a sample minus the number of parameters which are estimated from
observations of the sample. In our case, v is equal to Ng — 2 where Np is the
number of bins. v is approximately equal to Np since our observations are the
number of At that fall in each bin. v is two less than Npg for a couple of reasons.
One degree of freedom is lost because we know the total number of At so that
once we know the number of At in all but the last bin, we know the number in the
last bin without counting, so the number in the last bin is not independent of the
others. The other degree of freedom is lost via our method of determining the rate
7. Before calculating our bins of equal probability via Equation 3.6 we use bins of
equal width (except for the last bin which has its upper edge at infinity and lower
edge set so that there are 5 At observed in it) to calculate x? for differing 7 and

choose the 7 that minimizes x?2.

3.3 Application to Model

3.3.1 Apply to Data Without Correlations

The Poisson test described above was first applied to a white time series without
any inter-sample correlations, generated by a normally distributed random num-
ber generator. A distribution of the test results was created by running the test
10,000 times on randomly generated data segments 100,000 points in length with
a threshold X = 2.6 and 10 bins (Ng = 10). The mean of this distribution was
8.14 which is close to the number of degrees of freedom v = Ng — 2 = 8. Since
these data have no inter-sample correlations, the Poisson test results should follow
a x? probability distribution with » = 8. The x? probability distribution is given

by
1

- = (v=2)/2 —=z/2
2U/2F(V/2)x e (3.8)

f(z)

where I'(«) is the gamma function and

o) = /000 y* e Vdy. (3.9)
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Applying the x? test again to see if the distribution of Poisson test results are
described by a x? distribution with v = 8 we get a x? test result equal to 8.676.
We applied the test using 10 bins and knew v independently from the Poisson
test results so the number of degrees of freedom for the x? test is 9. x? = 8.676
is less than 9 and the probability of getting a x? result of this value or greater
is 48.8%. Therefore, we can say with confidence that the Poisson test applied to
uncorrelated data gives results that follow a x? probability distribution with v

equal to the number of degrees of freedom used in the test.

3.3.2 Apply to Model Data with Correlations

The next task is to apply the Poisson test to a time series generated by a nonlinear
model which is white but possesses higher order moments. One such model is
z; = (1+tan?0)~*/2(n;4+n;n;_j tan ). The series produced by this model is white
since the auto-correlation function C; = 1/T ZJT:O z;xj—; is zero for all values of
[ # 0. The higher order moments, however, are nonzero. Physically, this model
may be thought of as representing a type of nonlinear echo where the repeated
part is delayed by k& timesteps but its coupling depends upon the current state of
the signal. The model may also represent a system where impulses travel along
two different paths and then are coupled linearly and nonlinearly into the signal.

When the test is applied to this model, progressively higher values of x? are
obtained for higher values of § up to about 0.37 where the x? values start decreasing
somewhat but always remain significantly higher than the degrees of freedom.
Figure 3.1 shows the means of distributions of x? results calculated for values of
6 ranging from zero to /2, corresponding, on one hand, to no contribution from
non-linear couplings, and on the other hand, to no contribution to the uncorrelated

signal.

3.3.3 False Alarm / Efficiency

It is important to find a quantitative measure of how well the Poisson test detects
the presence of higher-order moments beyond simply noting the increase in the
average x? value for larger 0 values. One way of making this evaluation is to

compare the probability that data having non-linear couplings will be correctly
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E[xz] vs 6 for k =5 and NB =10
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Figure 3.1. Averages of x? test result distributions using the model of Equation 3.1
and different values of . Ten bins were used in the test, the threshold X = 2.6 and a
value of 5 was chosen for k. The solid line shows the number of degrees of freedom.

identified by the Poisson test (efficiency probability) with the probability that
data having no couplings will be erroneously flagged as having couplings by the
Poisson test (false alarm probability). We want a test that is highly sensitive to
couplings and flags data containing couplings as such as often as possible (high
efficiency) but that incorrectly flags data as having couplings when they actually
do not as infrequently as possible (low false alarm). Comparing the efficiency
and false alarm probabilities for Poisson tests having different parameters such as
threshold X and number of bins N will allow us to design a test that is best at
correctly categorizing data that do and do not contain non-linear couplings.
Data are identified as containing correlated samples by setting a threshold on

x? labeled x%. The Poisson test is applied to the data and if the x? resulting
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from the test is greater than 2 the data are identified as containing non-linear
couplings. If, on the other hand, the Poisson test’s x? is less than y2 we say that
the data are free of non-linear couplings.

Now consider applying the Poisson test to many sets of data generated by the
model z; = (1 + tan?6)~Y/2(n; + n;n;_xtan@) for some nonzero § that contain
a non-linear coupling. One will obtain a distribution of Poisson test x? values
from the different data sets. A certain fraction of these y? results will be above
the threshold x2. The fraction of above-threshold results is equal to the efficiency
probability (¢) and it gives the probability of a test result generated from the model
being correctly identified with the threshold 2.

Next, if we apply the Poisson test to many sets of data without any couplings,
we will obtain a different distribution of Poisson test x? values. A fraction of these
x? results will also be above the threshold x2. This fraction of above-threshold
results is equal to the false alarm probability («) and gives the probability that
data without couplings will be incorrectly labeled as having couplings if one uses
the threshold 7.

We can let the x2 threshold vary and calculate pairs of € and « probabilities
for a range of x2. The probability pairs may then be plotted against one another
as is done in Figure 3.2. A straight line from e = 0, « = 0 to e = 1, @ = 1 indicates
that at any threshold x2, the probability of correctly identifying couplings with
the Poisson test is the same as incorrectly flagging data without couplings. The
Poisson test in this case would be no better then flipping a coin to decide if data
contained couplings. If, on the other hand, the efficiency vs false alarm curve
lies above this straight line it means that for any threshold x2, the Poisson test is
more likely to correctly identify couplings than it is to incorrectly flag data without
couplings. In fact, the more the € vs a curve departs from the straight line, the
better the test will perform.

Figure 3.2 gives € vs o curves made with distributions of Poisson test results
calculated using the non-linear coupling model with different values of 6. The
curves associated with higher value of 6 depart most from a straight line, showing
that the Poisson test is most successful at identifying couplings in data from models
with higher values of #. This is what one would expect, since the model data with

the highest @ is the least like data without couplings.
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Efficiency vs False Alarm for k =5 and N, = 10
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Figure 3.2. False alarm / efficiency probability pairs for the model data and different
values of 6. At any false alarm value, the corresponding efficiencies increase for greater
0. This shows that the test works best when the portion of the model due to correlated
samples is large.

3.4 Choosing Parameters

When performing the Poisson test, there are two parameters whose values must be
chosen. These parameters are the threshold X applied to the data and the number
of bins Ny used in calculating x2. It is important to select these parameters
carefully as they not only affect the sensitivity of the test but are only valid for
ranges of values that depend on the number of samples making up the data being

tested.
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Number of Samples Threshold X Range

1,000 samp 1.5-1.9
5,000 samp 1.7-2.5
10,000 samp 1.9-28
50,000 samp 2.2-3.2
100,000 samp 2.2-34

Table 3.1. Threshold X ranges for various numbers of samples. The lower bound in
each range is the lowest X that results in E[x?]/v less than 1.3 when the Poisson test
is applied to uncorrelated data of unit variance using 10 bins. The upper bound is the
highest X that usually produces enough threshold crossings to perform the Poisson test.

3.4.1 Threshold

The Poisson test threshold X needs to be set high enough so that the intervals
between threshold crossings (At) are large enough to hide their discrete nature as
multiples of the time series’ timestep; otherwise the set of At for uncorrelated data
cannot be accurately modeled as obeying an exponential distribution, which is a
continuous probability distribution. On the other hand, X cannot be chosen too
high, or the total number of above-X samples will be so small that the test will
lack reasonable sensitivity. (The expected number in each bin must be at least 5
for the assumptions underlying the x?2 test to be valid [51].) Finally, the upper and
lower bounds on the range of good threshold values both depend on the number of
samples making up the data being tested. Figure 3.3 shows the mean value of x?
per degree of freedom v (whose expectation value is unity for large v) for different
X and numbers of samples. We denote mean x? per degree of freedom as E[x?]/v.
The test was applied to uncorrelated data of unit variance and 10,000 trials were
performed for each threshold and number of samples. Ten bins were used in each
test. As can be seen from this figure, E[x?]/v is close to one only over a certain
range of X. Table 3.1 gives X ranges for different numbers of samples. These
intervals are bounded below by the smallest X for which E[x?]/v was less than
1.3. Table 3.1 may be used as a guide for setting thresholds as long as the data
are normalized to have unit variance.

Figure 3.3 may lead one to think that the best threshold is always the high-
est one possible since higher X result in x? values closest to v. However, high

thresholds give the Poisson test few threshold crossing intervals to work with and
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E[xz]/v vs X for Different Data Lengths

10 T T T T T T E
Data Length = 1,000 samples| ;
------- Data Length = 5,000 samples| ]
= = = Data Length = 10,000 samples| |
T R Y N Data Length = 50,000 samples| |
Data Length = 100,000 samples|
2
L 10° | :
w
:|.0l 3 E
10° k L =

0 0.5 1 1.5 2 2.5 3 3.5 4
X (data scaled to unit variance)

Figure 3.3. Mean x? per degree of freedom (E[x?]/v) for various thresholds X and
numbers of samples. Each mean was calculated over 10,000 trials where the Poisson test
was applied to uncorrelated data of unit variance using 10 bins. For each number of
samples, there is a range of values where X is high enough that E[x?]/v is close to one
but still low enough to produce a sufficient number of threshold crossings to perform the
test.

its ability to find correlations is reduced. Figure 3.4 shows efficiency versus false
alarm rates for the test applied to model data with £ = 5, # = 0.17, and 100,000
samples using 10 bins and varying X. The lower X, the higher the efficiency for
any false alarm rate. Thus, a lower X increases the Poisson test’s ability to detect

correlations.

3.4.2 Number of Bins

When choosing the number of bins N to use in the Poisson test, one encounters a

similar trade-off as when choosing the threshold X. Figure 3.5 shows E[x?]/v for
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Efficiency vs False Alarm, 8 = 0.1t
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Figure 3.4. False alarm / efficiency probability pairs for the Poisson test using 15 bins
and different thresholds. The test was applied to model data with & = 5, # = 0.17, and
100,000 samples in duration.

different Ng. The test is applied to uncorrelated data 100,000 samples in length,
using X values between the bounds given in Table 3.1 for this length. As can be
seen in Figure 3.5, choosing a smaller Np will result in a E[x?]/v closer to one for
uncorrelated data. On the other hand, Figure 3.6 shows that the greater Np is,
the more effective the Poisson test. However, in Figure 3.5, one can see that the
increase in x? with more bins is not very dramatic, especially with higher X. This
slower increase allows for more flexibility in choosing the Np than with choosing

the Poisson test threshold X.
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E[xz]/v VS NB for Data Length = 100000 Samples
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Figure 3.5. E[x?]/v for different numbers of bins Ng and thresholds X. Each mean
was calculated over 10,000 trials where the Poisson test was applied to uncorrelated data
of unit variance and length of 100,000 samples. The smaller Ng, the closer E[x?]/v is
to one. However, the increase in x? with more bins is not very dramatic, especially with
higher X. This allows for more flexibility in choosing Np than with choosing the test
threshold X.

3.5 Setting Confidence Intervals

The confidence interval method, which is discussed in detail by Feldman and
Cousins in [52], allows one to compare a given time series with the model in
Equation 3.1 to determine the # most representative of the time series and thus
the magnitude of its non-linear couplings. The distribution of Poisson test x? re-
sults can be found for model data with different # values and a k chosen to be
representative of the delays in the data (ie. the center of the bin that contributes
most to x?). These distributions can then be used to find an interval [x?, x3] such
that the probability P(x? € [x?, x3]|f) = §, where § is the desired confidence. The
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Figure 3.6. False alarm / efficiency probability pairs for the Poisson test using a
X = 3.0 and different Ng. The test was applied to model data with £ = 5, § = 0.1,
and 100,000 samples in duration.

interval is centered so that P(x? € [0, x3]) = P(x? € [x3,00]) = (1 —§)/2.

For very small values of 6, a different approach must be used, however, since
intervals centered in this way will not include x? = 0. A zero x? result does not
indicate that the data have correlated samples and therefore should be included
in the confidence intervals when 6 is very small. For the small # distributions, a
second method for finding intervals should be used which is discussed in [52]. First
the probabilities P(x?|#) must be found. This can be done by histogramming the
distribution of test results, using the same set of bins for each value of #. Then

for each bin (x? value), the maximum probability among the different values of 6
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is called P(x?|0maz). Next, the ratio

R(XZ,Q) — PP(X2|9)

7(X2‘0maw) (3.10)

is calculated. Finally, for each 6, the confidence intervals are found by finding the
value R, such that

=Y P9 (3.11)

x23(R>R,)

The confidence bounds are then the maximum and minimum values of x? for which
R > R,.

A plot of 0 versus confidence intervals for model data is shown in Figure 3.7 for
N =10 and k = 5. Now when x? is calculated for a time series with an unknown
0, a vertical line drawn on the confidence interval plot at the calculated value of 2
will intersect the confidence interval boundaries at different values of #. The 6 that
best describes the time series will fall within this new interval with a probability

of 4, the desired confidence.

3.6 Application to LIGO Data

After the test was developed, it was applied to time series data from the 4-km LIGO
Livingston detector, acquired during the third science run (S3), which took place
from October 31, 2003 to January 9, 2004. The Poisson test cannot be applied
to the raw output of the LIGO detectors as it is very nonwhite. Besides having
higher power at lower frequencies, there are many narrow-frequency features in
the data caused by instrumental (such as resonances) and environmental (such
as 60 Hz power lines) effects. The data must first be whitened. The whitening
procedure, described in detail in Chapter 2, involves several steps which include
breaking up the broadband detector output (with sample rate of 16384 Hz) into
smaller frequency bands that are easier to whiten and removing narrow frequency
artifacts. The data in these frequency bands are heterodyned or shifted so that
the low edge of the band is at zero frequency.

We applied the Poisson test to Livingston detector data in the 128-192 Hz band

at times when all three interferometers were in “science mode” and producing



o6

Confidence Intervals for Model Data with 10 bins and k =5
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Figure 3.7. Confidence intervals calculated from model data using 10 bins, threshold
X = 2.5 and k = 5 for two different levels of confidence. A vertical line positioned at a
x? value will intersect the intervals, giving upper and lower bounds on # which describes
the magnitude of the correlations in the data. For example, if x% of 26 is obtained, the
90% confidence interval for 6 is 0.05447 to 0.12477 and the 98% confidence interval is
0.04737 to 0.14157.

data that passed all data quality tests. Data from these times are those used for
scientific analysis. These data were broken up into minute long (7680 samples
long) segments. After whitening, the Poisson test was applied to each segment
using a threshold X = 2.3 and 60 bins. Then, confidence intervals were calculated
using model distributions with a k£ equal to the median bin edge from the bin that
contributed most to x* over all segments (in this case k = 9).

Out of a total of 4,637 segments, 44.4% had 90% confidence intervals on 6 that
did not include zero and 36.5% had 98% confidence intervals that did not include

zero. The vast majority of these segments had a high x? that was obviously due
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Figure 3.8. Time series of LIGO Livingston data. Data shown are from the frequency
band 192-320Hz that has been heterodyned to 0-64Hz and whitened.

to either “glitches” which are high amplitude pulses in the data of instrumental
origin or to transient noise features which interfered with the data conditioning
procedure. There should be fewer of these types of noise events in the future, as
the stability of the detectors improves. There were also, however, some segments
with high x? with no glitches or problems with data conditioning. As an example,
consider the minute long segment beginning at GPS time 757336870. The time
series of the Livingston, 128-192 Hz, whitened data is shown in Figure 3.8 and
power spectral densities (PSDs) of unwhitened and whitened data are shown in
Figure 3.9. This segment had a x* = 108.59 (x*/v = 1.81), a 90% confidence
interval of 0.07857 to 0.5m on # and a 98% confidence interval of 0.05487 to 0.57
on A. A confidence interval plot is shown in Figure 3.10. As shown below, this

segment has more than just a high x? value to link it to our nonlinear model.
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Figure 3.9. Power spectral density (PSD) of LIGO data in the 128-192Hz band before
and after whitening. The “before whitening” PSD is from data that have only been
restricted to the 128-192Hz band and heterodyned while the “after whitening” PSD is
from data that have undergone the full data conditioning procedure including removal of
narrow features (lines) and being passed through a whitening filter (see Chapter 2). The
most prominent features removed are the line at 166.70 Hz which is caused by intention-
ally moving mirrors at this frequency for instrument calibration purposes and the line
at 180 Hz which is a harmonic of the 60 Hz power oscillations. The heterodyned data
actually go from 0-64 Hz but the frequency axis has been relabeled to make identifying
frequency features easier.

3.6.1 Bispectra

A common graphical approach for determining the higher-order nature of a time
series is to take its higher order spectra [53], [54], [55]. These spectra are simply the
higher dimensional analogs of the power spectrum. The most commonly used is
the third order bispectrum since the difficulty of calculation increases with order.

The power spectrum can be calculated by taking the Fourier transform of the
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Figure 3.10. Confidence intervals calculated from model data with ¥ = 9 using 60
bins. The x? value of an example segment of LIGO data is 108.59 which corresponds to
bounds on # of 0.07857 - 0.57 at 90% confidence and 0.05487 - 0.57 at 98% confidence.

autocorrelation function. Likewise, the bispectrum can be calculated from the

third order cumulant function:

Clr,m) =Y z(t)z(t + 1)zt + ), (3.12)

t

where z(t) is the mean-subtracted time series. The bispectrum is then the two

dimensional Fourier transform of the third order cumulant.
B(wi,ws) = / / C (71, 79)e 1T e 22 dr dry. (3.13)

Using the above expressions, we can analytically calculate the bispectrum of

our model time series. A non-zero bispectrum confirms that the model data deviate



60

Bispectrum of Model Data, k =5

w21

Figure 3.11. Real part of the bispectrum of model data with § = 7/4 and k = 5. A
frequency of 5 can be clearly seen.

from being uncorrelated. Furthermore, a similarity between the bispectrum of the
model data and the bispectrum of the LIGO data would indicate that the model
accurately describes the third order behavior of the LIGO data. Inserting the

model of Equation 3.1 into Equations 3.12 and 3.13 results in the expression:

B(wi,ws) = 2sinfcos?® flcoswik + coswek + cos(wi + wo)k

—i(sin w k + sinwyok — sin(wy + wo)k)]. (3.14)

In a plot of the bispectrum of randomly generated model data, one should see the
sines and cosines with frequencies equal to k. Such a plot is shown in Figure 3.11
for k = 5.

The bispectrum of the LIGO data from the 128-192 Hz band of the Livingston
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Bispectrum of LIGO Data

w21

Figure 3.12. Real part of the bispectrum of 128-192 Hz data from the LIGO Livingston
detector. There is a frequency of 2 present in the bispectrum, just as there is in the
bispectrum of model data with k& = 2, shown in Figure 3.13.

detector taken at GPS time 757556870 and analyzed above is shown in Figure 3.12.
Looking carefully, one can see a pattern with a frequency of 2. The bispectrum
of model data with & = 2 shown in Figure 3.13 has the same pattern. Thus we
conclude that these data contains a nonlinear component with a delay of two.
The bispectra shown in Figures 3.11, 3.12, and 3.13 give far more detail than is
present in the single x? value of the Poisson test for correlations. However, this test
has an important advantage over the bispectra besides a low computational cost.
One can see from Equation 3.14 when § — 7/2 that B(w;,ws) — 0. Therefore,
when tan 6 is large, the bispectrum cannot give any information about the nonlin-

earity. The test for correlations, on the other hand, is sensitive to correlations of

any type.
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Bispectrum of Model Data, k =2

w21

Figure 3.13. Real part of the bispectrum of model data with § = 7/4 and k = 2. A
frequency of 2 can be clearly seen.

3.7 Conclusion

Using the Poisson test to determine the statistical nature of above threshold data
points and so determining if there are correlations present is a good way of de-
tecting certain non-linear couplings. Higher order tools such as the bispectrum
may give more detail concerning the nonlinearity but are computationally expen-
sive. The Poisson test is quite inexpensive and therefore can be applied often and
used to provide warning that non-linear couplings are present which merit further

investigation.



Chapter

Supernovae

4.1 Introduction

The gravitational waves that we expect to observe in large detectors like LIGO [16]
and VIRGO [19] reflect the coherent evolution of the most compact part of the
source mass distribution. From the observed waves, we have the potential to de-
code the forces that govern that evolution.! For example, the evolution of the
collapsing stellar core in a type II supernova is determined by the progenitor mass,
angular momentum and its distribution throughout the core, and magnetic field.
None of these properties of the progenitor can be determined by the electromag-
netic radiation that we observe when the shock emerges from the stellar envelope.
In addition, the forces that govern the evolution of the core depend upon many
things that are unknown, or poorly modeled, by us today: for example, the matter
equation of state, the role played by neutrinos and neutrino transport, general rel-
ativity, convection and non-axisymmetry. The gravitational waves emitted during
the collapse and its aftermath carry the signature of all these properties of the
collapsing star and to read that signature, we must learn to recover the waveform
from the noisy detector observations. Here we develop a maximum entropy based
method for recovering the gravitational radiation waveform from the noisy data

from two or more detectors, demonstrate its effectiveness when applied to signals

LOr, if we assume we understand the forces — as in the case of a coalescing neutron star or
black hole binary system — then we can discern the bulk properties of the mass distribution
itself: e.g., the component masses and spins of the binary system.
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arising from core-collapse simulated supernova buried in simulated detector noise,
and show how the recovered waveform can be used to gain insight into the prop-
erties of the progenitor star and the forces acting on the collapsing stellar core.

The first problem addressed in this study is the problem of extracting the grav-
itational wave signal from the data produced by the detectors (also known as the
deconvolution problem). The detection process not only significantly modifies the
waveforms due to the projection of the gravitational wave polarizations onto each
detector and a detector’s varying sensitivity at different frequencies, but also adds
a significant amount of noise. It is a problem to be approached with care. A naive
inversion could cause the noise to completely overwhelm a faint signal, especially
for those frequencies at which the responses of the detectors are weak. The prob-
lem of inverting the responses of the detectors to recover the original gravitational
wave signal is discussed in detail in Giirsel & Tinto [56], where a filter is developed
which inverts the projection of the gravitational wave onto the detectors but not
the varying frequency responses. The maximum entropy method that we apply
to the problem of deconvolution has been often employed in astronomy. Maxi-
mum entropy is commonly used in astronomical image reconstruction, a recent
example being its application to CMB maps [57, 58, 59] including maps based on
data from WMAP [60] and COBE [61, 62]. We extend the method from image
analysis to recovering signals from time series data produced by gravitational wave
interferometers such as LIGO.

Once a gravitational wave signal is deconvolved from the data, a second prob-
lem is to be able to deduce the properties of the source from the signal. One way
of associating gravitational waveforms with supernova properties is to compare a
detected signal with theoretical waveforms from simulations using varying physical
parameters. One would expect the detected signal to have the most in common
with a waveform from a collapse model with similar character to the actual super-
nova. One example of this type of study, described in [63], creates a simulation
waveform vector subspace with which detected signals are compared. We use the
correlation between a recovered signal and a catalog of waveforms resulting from
models with differing progenitor characteristics as a qualitative measure of the
properties of the source.

This chapter describes a study that investigates the types of information that
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can be obtained from a LIGO detection of gravitational waves emitted by a core-
collapse supernova. Section 4.2 describes the maximum entropy method chosen
to recover a common signal detected by multiple interferometers and Section 4.3
compares maximum entropy with other methods. Section 4.4 describes a recently
produced catalog of core-collapse supernova waveforms based on computer simu-
lations and the physics that went into these simulation models. We simulate a
LIGO detection using one of these waveforms and demonstrate that, using maxi-
mum entropy and comparing the recovered signal with the waveform catalog, we
are able to determine several physical parameters of the simulation model that
produced the detected waveform, provided that the gravitational waves are of suf-
ficient strength. Finally, in Section 4.7 we summarize what was learned as well as

directions for further study.

4.2 Maximum Entropy Signal Extraction

Focus attention on a gravitational wave burst, with time dependent polarizations
h, (t) and hy(¢), incident from a direction s on a set of detectors. (Bold upper
and lowercase letters represent matrices and vectors, respectively.) The response
of each detector is a linear transformation of the h, and hy. The details of the
transformation depend on the direction of propagation of the waves relative to
the orientation of the detector, the details of the detector, and is different for the
different wave polarizations. We can write the output d; of detector £ as the sum
of detector noise n; with the convolution of the signals h, and h, with the (time

independent) response functions R 1 and Ry «:
di(t) = Ri1.(8)hy (1) + Ry e (8)hic (2) + m (2). (4.1)

Symbolically, then, we can write the output d of a network of detectors as the sum
of detector noise n with a linear transformation of an incident gravitational wave
signal hy:

d =R(s)h; +n. (4.2)

Our goal is to infer h; given d, R(s) and the statistical properties of the detector

noise n.
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Deconvolution of a noisy signal is a challenging problem [64]. The response
function R is often ill-conditioned, and may not even be invertible. One very
successful approach to the problem of deconvolution follows from Jaynes’ principle
of maximum entropy [65, 66]. Let P(h|d, R, ) be the probability density that h
is the incident signal given our knowledge of d, R, and other prior information I,
which includes the statistical properties of the noise n. Using Bayes’ Law we can

write this probability density as
P(h|d,R,I) x P(d|h,R, I)P(h|I). (4.3)

The probability density P(d|h, R, I) is the probability of the data under the hy-
pothesis h. The probability density P(h|I) describes how likely we think a given
h before we have taken any data.

Without loss of generality, assume that the noise has zero mean and covariance
C. If the noise is Gaussian, or if the covariance C is all the knowledge we have of

the noise statistics, then we can write
1
P(dh,R,I) x exp [—5 (d—Rh)"C ' (d- Rh)] (4.4a)
1
= exp [—§X2(h, R, C,d)} ) (4.4b)

In general terms, Giirsel & Tinto [56] take as their estimate hg of h; the h that
maximizes x%(h, R, C,d): i.e., that maximizes the likelihood given the data. In
addition to sometimes being poorly behaved (owing to the properties of R) the
resulting hy will generally over-fit the data: i.e., the resulting x? will be lower
than expected, given the number of degrees of freedom dim(d) — dim(h).

Maximizing the likelihood amounts to finding the h for which d is the most
probable detector output. Our interest, on the other hand, is in the h that is
most probable given the detector output d. To find that h we need to maximize
P(h|d, R, I), which requires specifying P(h|I).

Jaynes’ principle of maximum entropy [65, 66] motivates a particular choice of
P(h|I). Suppose that h; is composed by distributing a collection of positive and
negative “quanta” of amplitude 1/« among the different elements h; of h, with the

value of h;, the i*" component of h, equal to the number of positive quanta minus
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the number of negative quanta. If we suppose that the probability of a positive or
negative quanta being distributed into bin ¢ is independent of ¢, then it is natural
to assume that the probability P(h|I) of observing signal h is proportional to the
number of different ways in which the quanta can be distributed and yield h. The
log of P(h|I) is then related to the Shannon information entropy [67] associated
with the probability distribution P(h|I) [68]:

P(h|I) o« exp|aS(h,m)] (4.5a)
S(h,m) = Z s(h;, m;) (4.5b)
U; + h;
inmi) = Wi —2m; — hl ; 4.
s(hs, m;) m; — h;log o, (4.5¢)
where h;(m;) are the scalar components of h(m),
U, = (b2 +4m?)"?, (4.5d)

and m; is the expected number of positive and negative quanta in bin i. (Le., on
average we expect m; positive quanta and m; negative quanta, for a total h; of
Z€ro.)

Setting aside for the moment the assignment of m and «, the maximum entropy
choice of P(h|I) leads us to choose as the best estimate hg of h; the h that
minimizes

1
F(h|d,C,a,m) = §X2(h, R,C,d) — aS(h,m). (4.6)

Stripped of its Bayesian statistical motivation, we recognize that maximum entropy
deconvolution amounts to the solution of the inverse problem using regularization
methods with a specific regularization function (a.S(h, m)).

Different choices of o and m will lead to different h that minimize the function
F(h|d, C, a,m). Intuitively, too small an « will lead to over-fitting of the noisy
data and too large an « will lead to a solution h that approaches 0 (i.e., the h
that maximizes the entropy functional S(h,m)). Gull [69] describes a Bayesian
approach to the determination of o that relates the curvature of F' at its minimum
(which is in turn related to the uncertainty in the parameter values h;) to the

number of parameters being sought (i.e., dimh). MacKay [70] finds a simple
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approximation, which is to seek «a, such that, when F'is minimized, F' = dim(h)/2.
An appropriate choice of the m; can be made by following a procedure described

by [70]. Using Bayes’ Law, we can write the probability of m given d as
P(ml|d, ) x P(djm, I)P(m|I), (4.7)

where I is any other prior information, as before. If we assume no prior preference
for any particular choice of m, P(m|I) is constant so the most probable m will be

the one that maximizes P(d|m, I). At the same time, from Bayes’ Law
P(h|d, m, I)P(d|m, I) = P(d|h, m, )P(h|m, I). (4.8)
Integrating this expression over all h gives
P(dm, 1) = / DhP(d|h, m, I)P(h|m, ). (4.9)

Now, according to Equations 4.4b and 4.5a,

1.2
exp (—>x
P(d/h,m, ) Dd ( 2_1) 5 (4.10a)
J Ddexp (=3x°)
exp (aS)
P(hjm,I) = . 4.10b
(hjm, T) | Dhexp (aS) ( )
Therefore, the most probable m is found by evaluating
P(dm,I) = J Dhexp (—5x° + o) (4.11a)
’ [ Ddexp (—1x?) [ Dhexp (aS)
Z
= Zd;h' (4.11b)

When evaluating Z, it is helpful to realize that (—1/2)x*+ .S is the negative
of the functional F' in Equation 4.6 which we minimize to find the best estimate hg
of h;. Therefore, we can simplify the integration by performing a Taylor expansion
about hg
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where H(F)|n, is the Hessian of F' with respect to h, evaluated at h = hg.
Ignoring higher order terms and performing the multivariate Gaussian integration

then gives
Zp ~ exp [~ F(hg)] (2m) "/ (det | H (F) |, )", (4.13)

where N}, is the number of elements of h. The direct calculation of the determinant
of a large matrix is prone to being overwhelmed by numerical errors so we instead

calculate the log of Zp
Ny, 1
log Zr ~ —F(hg) + 5 log(27) — Elogdet |H(F)|ngl - (4.14)

To calculate the log determinant, we decompose the matrix into the form UT A (I—
D)AU, where U and A are upper-triangular and diagonal matrices, respectively,
I is the identity matrix, and D is a sparse matrix with eigenvalues in [—1,1].
We then evaluate the log determinant of (I — D) using the Monte Carlo estimate
method of [71].

Following a similar approach in evaluating Z; we find

—-1/2

7y~ exp [_%XQ(dO)] (2m)%/ (det | H (/2) o) 2, (4.15)

where H (x?/2) |q, is the Hessian of x%/2 with respect to d, evaluated at d = d,
and Ny is the number of elements in d. dg is the d that maximizes —x?*/2, or
do = Rh and x?*(dg) = 0. Also, H (x?/2) = C!, the inverse of the covariance
matrix C. If we compute the Cholesky decomposition of the covariance matrix
C = CI'C,, where C, is an upper triangular matrix, the log of Z; can be simply
calculated as

log Zy ~ % log(27) + sum(log(diag(Cy))), (4.16)

where the second term on the right is found by taking the log of each element
along the main diagonal of C; and summing.

Finally, evaluating 7, we find
Zy, ~ exp [aS(hy)] (27)¥+/2 (det || H (—auS) \ho||)71/2 , (4.17)

where H (—asS) |q, is the Hessian of —a.S with respect to h, evaluated at h = h,.
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hg is the h that maximizes .S, or hg = 0 and S(hy) = 0. At this value of h, the
Hessian H (—aS) |n, is equal to a diagonal matrix. If we assume all of the elements
of m are the same (m; = m for all 7), each nonzero element of this diagonal matrix

is equal to a/2m and
Np
log Z, = - [log(27) — log (a/2m)] . (4.18)

We assume no prior knowledge about the signal and, therefore, have no infor-
mation about the distribution of the positive and negative quanta that make up
the signal and determines m. The maximum entropy best estimate hg does not
change quickly with changing m but remains essentially the same as m ranges over
a few orders of magnitude. We determine the appropriate model by finding hg for
m of different orders of magnitude and select the one for which the log evidence,

log P(d|m, I) = log Zr — log Z4 — log Zj, is greatest.

4.3 Comparing Maximum Entropy With Other
Methods

To demonstrate the effectiveness of the maximum entropy method, we compare its
ability to reconstruct a signal with that of two simple deconvolution approaches:
zero-forcing (ZF) and minimum mean square error (or Weiner) filtering (MMSE).
ZF and MMSE assume that the signal to be recovered has been convolved with a

response function and noise added to create the data from each detector (dy)
dy =r;*h; +n, (4.19)

where x denotes convolution and ry is a vector describing the response of a single
detector. ZF ignores the presence of noise entirely and in the frequency domain

can be implemented by simply dividing the data by the response:

ﬁZF(w) = 7 (420)
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where tilde denotes Fourier transform. MMSE, on the other hand, takes the

amount of noise into account and recovers the signal via

1 |7

Fr(w) |Fe(w)]? + K di(w). (4.21)

BMMSE(W) =

where K is a constant that we set equal to the rms of the noise divided by the
variance of the signal [64]. This form of MMSE assumes that one knows the
variance of the signal but does not have access to detailed information about the
power spectral density (PSD) of the signal. It is therefore optimal for white signals
only, but is the best we can do with limited prior information about the signal.
We use these three signal recovery methods: maximum entropy, ZF, and MMSE
to recover two different signals. The first signal is a Gaussian distributed, white,
random signal and the second is a supernova waveform signal described in Sec-
tion 4.4.2. The two signals were convolved with two simple response filters r; =
[1 =2 2T andr, =1 2 2|7 and added to Gaussian distributed, random
noise. For each initial signal, the two data streams can be written as
di=r;*xh;+n

(4.22)
d2:r2*h[+n2,

or in terms of the maximum entropy response function array R

e (B) - (B Y () omn

where, for this example,

[ 1 0 00 -\
=) 00
. 2 00
diag(r;) = 0 2 2 10 (4.24)
0 0 2 -2 1

\ P

Both ZF and MMSE invert only one data stream at a time to recover the initial
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signal h;. The estimates based on d; and d, separately are added together to
form the final estimates hzr and hj/p55. The maximum entropy algorithm, on
the other hand, returns its estimate hysu. g, directly.

The Gaussian distributed, random noise added to form the simulated data is
added at several different signal-to-noise ratios (SNRs). We calculate the SNR as
the ratio of the “energy” of the response function times the signal to the “energy”

of the noise or RI2
SNR = 2i(Bh0); (4.25)

Once we have an estimate of the initial signal using maximum entropy, ZF,
or MMSE, we would like to compare the estimate with the initial signal. We use
maximum cross correlation as a measure of similarity. To calculate the maximum
cross correlation between two vectors x and y we first normalize the two vectors
such that their autocorrelations at zero lag are equal to one. We denote these
normalized vectors as X and y. If the two vectors are both of length L we then
calculate the cross correlations C(7) for lags i between —L/2 and L/2, where, if
1> 0,

L—i
0(0) = Y. #ui8 (4.262)
j=1
or, if 1 < 0,
L—li|
C(i) = &l (4.26b)
j=1

The maximum cross correlation is the maximum value that C obtains over all lags
.

Figures 4.1 and 4.2 show the maximum cross correlations between the initial
and reconstructed signals for various SNRs and with the different deconvolution
methods. Figure 4.1 shows the results of the methods for the random, Gaussian
signals. For low SNR, maximum entropy and MMSE are much better at decon-
volving the signal than ZF, which does not account for the noise amplitude. This
poor performance of ZF highlights the need for regularization of the response R
inverse. At low SNR, MMSE performs slightly better than maximum entropy be-
cause MMSE is given information about the signal amplitude. The slightly lower

performance of MMSE and ZF compared with maximum entropy at high SNR
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Figure 4.1. Maximum cross correlation between the recovered and initial, random,
Gaussian signal at different SNR using different deconvolution methods. Maximum
entropy and MMSE perform better than ZF at low SNR. At very low SNR, MMSE
performs slightly better than maximum entropy because it is given more information
about the signal.

is most likely due to the addition of the separate channel estimates (each with a
small amount of noise) to form final estimates. Figure 4.2 compares the methods
for the case of a supernova signal [1]. Notice that for this nonwhite signal, maxi-
mum entropy outperforms MMSE for low SNR. Finally, Figs. 4.3 and 4.4 show the
estimated supernova signal for low and high SNR for both maximum entropy and
MMSE.
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Figure 4.2. Maximum cross correlation between the recovered and initial supernova
signal at different SNR using different deconvolution methods. Maximum entropy out-
performs MMSE and ZF for the case of this nonwhite signal.

4.4 Application

The objective of LIGO goes beyond waveform recovery to discovery of the proper-
ties of the waveform source, which in the case of this chapter is a collapsing stellar
core. To make this discovery, we propose to recover the waveform, using maximum
entropy, and compare the recovered waveform with model waveforms, created by
simulation, and see which models best match what we have observed. A measure
of the “match” between model waveforms and recovered waveform is given by the
maximum cross correlation between the two signals, as defined in Equations (4.26a)
and (4.26b). We show that the catalog waveforms that result from models with
character similar to the model that produced the waveform used as the simulation’s

initial signal have the highest cross correlation with the estimated signal, provided
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Figure 4.3. Estimation of supernova signal for high SNR of 10. (a) Portion of waveform
([1] s15A1000B0.1) used as initial signal. The waveform is scaled to correspond to a
supernova at 10 kpc. (b) Data stream d; formed by convolving the initial signal with
the simple filter [1 -2 2] and adding white, Gaussian noise. (c) Data stream dg formed
by convolving the initial signal with the simple filter [1 2 2] and adding white, Gaussian
noise. The convolved signal created using the filter [1 2 2] has a higher amplitude than
the signal created with [1 -2 2]. The amplitude of the noise is chosen so that the average
SNR for the two, convolved signals is 10 and the same amplitude noise is added to both
signals. (d) Maximum entropy estimated signal. (e) MMSE estimated signal. Both
maximum entropy and MMSE do a good job of estimating the initial signal.

sufficient signal strength. Therefore, the maximum cross correlation provides a

qualitative indication of the physical properties of the source.

4.4.1 Description of Core-Collapse Models

This study used gravitational waveforms computed from a set of 2D, axisymmetric

core collapse simulations by Ott et. al. [1] which focused on the dynamics of ro-
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Figure 4.4. Estimation of supernova signal for low SNR of 0.1. (a) Portion of waveform
([1] s15A1000B0.1) used as initial signal. The waveform is scaled to correspond to a
supernova at 10 kpc. (b) Data stream d; formed by convolving the initial signal with
the simple filter [1 -2 2] and adding white, Gaussian noise. (c) Data stream dg formed
by convolving the initial signal with the simple filter [1 2 2] and adding white, Gaussian
noise. The convolved signal created using the filter [1 2 2] has a higher amplitude than
the signal created with [1 -2 2]. The amplitude of the noise is chosen so that the average
SNR for the two, convolved signals is 0.1 and the same amplitude noise is added to both
signals. (d) Maximum entropy estimated signal. (¢) MMSE estimated signal. Maximum
entropy is able to estimate the signal more accurately than MMSE

tational collapse and bounce. These models used stellar progenitors with various
masses: 11, 15, 20, and 25M, calculated in [72]. The simulations neglected the
effects of neutrinos and general relativity, but used the realistic, finite-temperature
equation of state of [73]. A small number of simulations also investigated stellar
progenitor models from [74] and [75], which were evolved to the onset of iron core
collapse with an approximate treatment of rotation [74, 75] and angular momentum

redistribution by magnetic torques [75]. The gravitational wave signature extrac-
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tion was performed using the Newtonian quadrupole formalism (see e.g. [76]).
The effects of rotation were investigated very thoroughly in [1]. The initial ro-
tation of the progenitor was controlled by two parameters: the rotation parameter

[ where
Erot

| Eyrav |

B (4.27)

and the differential rotation scale parameter A, which is the distance from the
rotational axis at which the rotational velocity drops to half that at the center. A

is defined as .

Q(r) = Qq [1 + (%)2} , (4.28)

where r is the distance from the axis of rotation and €2(r) is the angular frequency
at r.

When the progenitor is rotating slowly and 3 is small (zero to a few tenths of a
percent), the collapse is halted when the inner core reaches supranuclear densities.
The core bounces rapidly and then quickly rings down. When the progenitor
rotates more rapidly and S is larger, the core collapse is halted by centrifugal
forces and the core bounces at subnuclear densities. The core then undergoes
multiple damped, harmonic oscillator-like expansion-collapse-bounce cycles. The
initial degree of differential rotation affects the value of 8 at which this bounce
type transition occurs. A progenitor with a smaller value of A experiences a
greater amount of differential rotation and hence, a more rapidly rotating inner
core. As a result, the transition from a supranuclear to a subnuclear bounce occurs

for a lower value of .

4.4.2 Extracting Source Information from a Simulated De-

tection

How well can we hope to characterize a supernova progenitor from the gravitational
wave signature we observe? To study this question, we have simulated the noisy
data stream from two 4-km LIGO gravitational wave detectors observing a simu-
lated supernova. For this study, we used the parameter study of gravitational wave
signatures generated by supernovae in [1] and the noise performance and detector

response of the LIGO gravitational wave detectors. In all simulations the actual
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signal embedded in the noise came from the model s15A1000B0.1 of [1], which cor-
responds to a 15 Mg, progenitor from [72] with rotation parameter 5 equal to 0.1%
and differential rotation scale parameter A equal to 1000 km. The gravitational
wave signal arising from this model was scaled to different distances and projected
onto the 4-km Hanford, WA (LHO) and Livingston, LA (LLO) LIGO detectors as
if the supernova were directly above the Hanford site. Since the supernova models
are axisymmetric, the gravitational radiation is linearly polarized. The polariza-
tion angle was chosen to maximize the response of the LHO detector [77]. We used
response functions for the LHO and LLO detectors characteristic of four different
science runs (S1, S2, S3 and S4) [78, 79, 80, 81] and simulated the detector noise
by adding white noise with power spectral density amplitude approximately equal
to the noise amplitude at 100 Hz in the corresponding science run [2, 3, 4, 5].
We used maximum entropy to find the best estimate of the embedded signal and
cross-correlated this estimate signal with different signals drawn from the param-
eter survey of [1]. The subsections below describe our observations based on this

study.

4.4.2.1 Improvement with Science Run

Figure 4.5 shows the maximum cross correlation between the estimated signal and
initial waveform used in the data simulation versus supernova distance for the four
science runs. There is a steady improvement, from S1 to S4, in maximum entropy’s
ability to recover signals at greater distances, corresponding to improving detector
sensitivity [2, 3, 4, 5].

By S4, maximum entropy is able to recover the gravitational waveform from a
supernova that occurs as far as a few kpc away, whereas for S1 the cross correla-
tion between the initial and recovered signals drops off at ten parsecs. The inves-
tigations into the source information present in the recovered, estimated signals
described in the following sections, use the data simulated for the most sensitive

S4 science run.
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Figure 4.5. Maximum cross correlation between estimated and initial signals versus
supernova, distance for data simulated using different science run detector impulse re-
sponses and noise levels. The estimated signal is recovered using maximum entropy from
simulated detections that use Ott et.al. [1] model s15A1000B0.1 as the initial signal
waveform. There is a steady improvement in maximum entropy’s ability to reconstruct
fainter, more distant signals as the sensitivity of the detectors improved [2, 3, 4, 5].

4.4.2.2 Bounce Type

We can classify the models of [1] into those that bounce at supranuclear densities,
subnuclear densities, and transitional densities. Figure 4.6 shows the maximum
cross correlation between the recovered waveform and the catalog waveforms of
the three bounce varieties that have the greatest maximum cross correlation at
small distance. It is clear that the recovered waveform has the most in common
with that generated from a model with the same, supranuclear, bounce type and

that our ability to distinguish bounce type fails for supernovae more than 2-3 kpc
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away for S4 detector sensitivities. Figure 4.7 shows the different waveforms that
are compared with the recovered signal in Fig. 4.6. The waveform amplitudes are

scaled to correspond to optimally oriented supernovae at a distance of 10 kpc.

4.4.2.3 Mass

Figure 4.8 shows the cross correlation between the recovered waveform and the
waveforms associated with supernova models that differ by progenitor mass, but
share the same rotational parameters, while Fig. 4.9 shows these waveforms. The
recovered waveform for distances up to 2 kpc most closely resembles the waveform

from the model with the same mass.

4.4.2.4 Rotation

Figures 4.10 and 4.11 show the cross correlation between the recovered waveforms
and the waveforms associated with models that differ only by rotation parameter
and by differential rotation parameter. Figures 4.12 and 4.13 show these wave-
forms. As the rotational parameters of the models depart from those associated
with the original waveform’s model the magnitude of the maximum cross correla-

tion decreases.

4.4.3 Adding a Detector

In order to see how the performance of maximum entropy changed with the addi-
tion of the third LIGO detector, we repeated the supernova detection simulations
described in Section 4.4.2. The simulated data were created for not only the two
interferometers with 4 km long arms, but for the Hanford detector with 2 km
long arms as well. The maximum cross correlation between the estimated and
initial signals versus distance for the four science runs with the three detectors is
shown in Fig. 4.14 and compared with the performance using only the two 4-km
detectors. As can be seen in this figure, adding the 2-km detector sometimes does
and sometimes does not improve maximum entropy’s ability to recover supernova
signals. In the case of the S3 simulations, using three detectors worsens perfor-
mance significantly. During the S3 run, the 2-km detector was much less sensitive
than the 4-km detectors below a few hundred Hz [4]. During S4, however, the
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Figure 4.6. Maximum cross correlation between reconstructed waveforms and wave-
forms associated with models that differ by bounce type versus supernova distance and
SNR. The reconstructed waveform is recovered using maximum entropy from simulated
detections that use the waveform from the Ott et.al. [1] model s15A1000B0.1 as the
initial signal waveform as well as detector responses and noise levels from the fourth
science run (S4). The solid line represents the maximum cross correlation between the
reconstructed signal and the initial signal waveform. The other lines represent the max-
imum cross correlations between the recovered waveforms and the waveforms resulting
from each bounce type for which the maximum cross correlation at 1 pc is greatest,
excluding that used for the initial signal. The recovered waveform is most similar to
those generated by models with the same, supranuclear bounce type as the initial signal
waveform, for the simulations corresponding to supernovae that occur less than 2-3 kpc
away.
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Figure 4.7. The waveforms associated with various bounce types that are compared
with the recovered signal in Fig. 4.6. The upper left plot shows the waveform (from Ott
et al. [2004] model s15A1000B0.1) that was used as the initial signal in the simulated
detection. The three other waveforms shown are those that are most similar to this
initial signal waveform, for each bounce type. The waveform from the [1] s20A50000B0.2
model looks much like the initial signal waveform which is of the same, supranuclear
bounce type. The subnuclear bounce waveform shows the effects of multiple damped,
harmonic oscillator-like expansion-collapse-bounce cycles. The zero points of the time
axes are chosen so that the minima of the waveforms occur at the same time for ease
of comparison. The waveform amplitudes are scaled to correspond to supernovae at 10
kpc.

2-km detector was much closer to the expected factor of two less sensitive than the
4-km detectors [5] and adding data from the 2-km detector improved maximum
entropy’s performance. As all three detectors continue to improve in stability and
reach their design sensitivities we expect the relative detector sensitivities to be
closest to those in S4 and that using the data from all three interferometers will

give the best results.
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Figure 4.8. Maximum cross correlation between reconstructed waveforms and wave-
forms associated with models that differ only by progenitor mass versus supernova dis-
tance and SNR. The reconstructed waveform is recovered using maximum entropy from
simulated detections that use a waveform from a model with a progenitor mass of 15
solar masses (Ott et al. [1] model s15A1000B0.1) as the initial signal waveform as well
as detector responses and noise levels from the fourth science run (S4). The recovered
waveform is most similar to that generated by the model with the same progenitor mass
for the simulations corresponding to supernovae that occur less than 2-3 kpc away.

In addition to the three LIGO detectors, the maximum entropy method could
be applied to data from other gravitational wave interferometric detectors such
as GEO600 [17], TAMA300 [18], and VIRGO [19]. For the simulation described
above, adding one of these detectors would most likely not improve maximum
entropy’s estimate of the signal, since we have chosen the optimal sky location and

source orientation for Hanford. The absolute amplitude of the gravitational wave
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Figure 4.9. Waveforms from models that differ only by progenitor mass. The waveform
corresponding to model s15A1000B0.1 was used as the initial signal in the detection
simulations. The zero points of the time axes are chosen so that the minima of the
waveforms occur at the same time for ease of comparison. The waveform amplitudes are
scaled to correspond to supernovae at 10 kpc.

strain from a source at this sky location and orientation projected onto the LIGO
Livingston detector is 89% that for the Hanford detectors. The strain amplitude
for GEO300 is 42%, for TAMA300 is 22%, and for VIRGO is 1% that at the
Hanford detectors. For signals coming from sky locations that are more favorably
located for these, non-LIGO detectors, including data from these instruments will

be essential for waveform recovery and analysis.
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Figure 4.10. Maximum cross correlation between reconstructed waveforms and wave-
forms associated with models that differ only by rotation parameter 3, which is defined
in Equation (4.27), versus supernova distance and SNR. The reconstructed waveform is
recovered using maximum entropy from simulated detections that use a waveform from
a model with a rotation parameter of § = 0.1% (Ott et al. [1] model s15A1000B0.1) as
the initial signal waveform as well as detector responses and noise levels from the fourth
science run (S4). The recovered waveform is most similar to that generated by the model
with the same § for the simulations corresponding to supernovae that occur less than
2-3 kpc away.

4.5 Realistic Noise

Using white noise to simulate LIGO noise is unrealistic since LIGO noise is far
from white (see Chapter 1). One may be concerned that in the case of an actual
supernova detection, the maximum entropy method may be unable to recover the

gravitational wave signal due to the presence of highly colored noise. In order
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Figure 4.11. Maximum cross correlation between reconstructed waveforms and wave-
forms associated with models that differ only by initial degree of differential rotation as
parameterized by A, which is defined in Equation (4.28), versus supernova distance and
SNR. The reconstructed waveform is recovered using maximum entropy from simulated
detections that use a waveform from a model with a differential rotation parameter of
A = 1,000 km (Ott et al. [1] model s15A1000B0.1) as the initial signal waveform as well
as detector responses and noise levels from the fourth science run (S4). The recovered
waveform is the most similar to that generated by the model with the same initial degree
of differential rotation.

to address this concern, we repeated the detection simulation using S4 detector
responses and S4 data as noise. The maximum cross correlation between the
original and estimated signal for both white and realistic detector noise is shown
in Figure 4.15. Maximum entropy’s ability to recover the signal from the data

created with nonwhite noise is actually a little better than for white noise. This
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Figure 4.12. Waveforms from models that differ only by rotation parameter 3, defined
by Equation (4.27). The waveforms for larger 8 (> 0.4%) have significant amplitude over
durations of hundreds of ms, while low 8 waveforms last only for tens of ms. The 8 =
0% waveform has very low amplitude as the non-rotating collapse is nearly spherically
symmetric. The waveform corresponding to model s15A1000B0.1 was used as the initial
signal in the detection simulations. The zero point of the time axes for the plots on the
right is chosen so that the onset of significant gravitational wave amplitude occurs at
roughly the same time while the plots on the left show the first 800 ms of the waveform.
The waveform amplitudes are scaled to correspond to supernovae at 10 kpc.

not only shows that maximum entropy is well able to handle colored noise but that
choosing to scale the white noise by LIGO noise power at 100 Hz for the simulated

detections is a conservative choice.
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Figure 4.13. Waveforms from models that differ only by initial degree of differential
rotation. The differential rotation parameter, A, is the distance at which the rota-
tional velocity of the progenitor drops to half the rotational velocity at its center. As
A decreases the differential rotation of the progenitor becomes more extreme and the
amplitudes of the gravitational waves increase. The center plot shows the waveform cor-
responding to model s15A1000B0.1 which was used as the initial signal in the detection
simulations. The zero points of the time axes are chosen so that the minima of the
waveforms occur at the same time for ease of comparison. The waveform amplitudes are
scaled to correspond to supernovae at 10 kpc.

4.6 Hardware Injection Recovery

The maximum entropy method assumes that the response matrix R is known
perfectly. In reality, the portion of R due to the projection of the gravitational
waves onto the arms of the interferometers is well known while the portion due to
the varying frequency responses of the detectors is measured. This measurement
process is described in [78, 79, 80, 81, 82].

In all of the simulations described in previous sections, the R used by maximum
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Figure 4.14. Comparison of maximum entropy performance with simulated data from
two and three interferometers. Adding the third, 2-km interferometer does or does not
help depending on its sensitivity relative to the other two detectors. During S3 the
Hanford 2-km interferometer was much less sensitive than the two 4-km detectors below
a few hundred Hz [4]. During S4, however, the 2-km detector was much closer to the
expected factor of two less sensitive than the 4-km detectors [5] and adding the 2-km
data improved maximum entropy’s results.

entropy is the same as that used to create the simulated data. In order to test our
ability to recover a signal under more realistic conditions, where R is measured,
we apply maximum entropy to data containing hardware injections. Hardware
injections are performed by moving the mirrors of the interferometers so that
signals are “injected” into the data. Studying hardware injections is the closest
one can get to data from actual gravitational wave detections.

We applied maximum entropy to two hardware injections carried out during
S4. Both used the waveform A3B3G1 from the Zwerger-Miiller catalog as the

injection waveform [83]. The Zwerger-Miiller waveforms come from core-collapse
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Figure 4.15. Comparison of maximum entropy performance with simulated data using
white noise and using actual LIGO data for noise. The LIGO data was acquired during
the S4 data run and the white noise was scaled to have the same power as the LIGO
data at 100Hz. Maximum entropy is able to recover signals better from the data with
the LIGO data noise showing that the method is well able to deal with colored noise

simulations that use many of the same parameters as Ott et. al. [1] which provide
the waveforms used in the simulations described above. The main differences
between the two sets of simulations are that the Zwerger-Miiller simulations assume
an equation of state (EOS) that is polytropic, that is, part of the pressure can be
described by P = K p" where K is a constant that depends on the electron number
fraction (which is set to one half), p is the density and I' = 4/3. Collapse is
initiated by suddenly reducing I' from 4/3 to a new value I', [83]. Models by Ott
et. al., on the other hand, use realistic progenitors instead of polytropes, use a

tabular, realistic equation of state, and collapse on their own [1]. The A3B3G1
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Zwerger-Miiller model has a differential rotation parameter A = 500 km, rotation
parameter 8 = 0.9 % and T, = 1.325 [83].

The two hardware injections that we studied were done at two different signal
strengths. The stronger hardware injection was scaled such that its integrated
strain A,z = 8.0 x 102! while the weaker injection had h,, = 0.5 x 1072*. The
hardware injections were performed in all three detectors.

The response matrix, R, was calculated assuming a source directly above and
optimally aligned for each detector (this nonphysical arrangement was used in
the injections), a 0.002 second delay between Livingston and Hanford and the
measured calibration of each detector.

Figures 4.16 and 4.17 show the signals recovered from the strong and weak
hardware injection data from all three LIGO detectors using maximum entropy.
The comparison with the original injection signal shows that maximum entropy is
successful in recovering signals from real LIGO data. Figures 4.18 and 4.19 show
the maximum cross correlation between the recovered signal and waveforms from
Zwerger-Miiller models that differ only by A and 5. These figures show that these
signals recovered from actual data using an imperfect R still contain information

about the rotation of the progenitor.

4.7 Discussion/Conclusions

In this chapter we have introduced the use of the maximum entropy method to
recover supernova gravitational wave signals from detector data. We have shown
that maximum entropy compares favorably with other methods and can even re-
construct waveforms at low SNR. Once the signals have been recovered with max-
imum entropy, calculating the maximum cross correlation between the recovered
signals and a catalog of waveforms from models incorporating a variety of physical
parameters, provides a qualitative indication of the properties of the source.

We have also demonstrated that the promise of gravitational wave astronomy
can be realized: that gravitational waves associated with supernovae contain sig-
nificant information about the systems that generate them, including progenitor
mass, rotation parameter, initial degree of differential rotation, and that this in-

formation can be extracted from gravitational wave observations. With current
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Figure 4.16. Strong hardware injection recovery using maximum entropy. The recov-
ered waveform has many of the features of the original signal used to create the hardware
injection

detector sensitivities and supernova modeling, the details of observed supernovae
can be recovered for supernovae as far away as a few kpc.

Further studies will investigate more sophisticated measures of waveform in-
formation content than the simple cross correlation. We will also be investigating
waveforms from new simulations, as they become available, to see how our ability
to determine physical parameters changes with the addition of new physics (such

as neutrinos) in the models.
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Figure 4.17. Weak hardware injection recovery using maximum entropy. The recovered
waveform is very noisy but still retains the strongest features of the original signal used

to create the hardware injection.
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Figure 4.18. Maximum cross correlation between the recovered waveform and wave-
forms from Zwerger-Miiller models that differ only by the amount of differential rotation
A. Even for the weaker hardware injection, the recovered waveform most resembles that
from the model with the same A as used in the injection.
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Figure 4.19. Maximum cross correlation between the recovered waveform and wave-
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the weaker hardware injection, the recovered waveform most resembles that from the
model with the same 8 as used in the injection.



Chapter

Conclusions

In order for the potential of LIGO to be realized and gravitational waves become an
important astronomical tool, there are many data analysis challenges that must
be met. The three projects described in this thesis make contributions toward
addressing some of these challenges.

Chapter 2 introduced a procedure for conditioning LIGO data. Such a pro-
cedure is essential for gravitational wave burst search algorithms that require the
data be as free of artifacts and correlations as possible. In addition the procedure
breaks the data into frequency bands. Candidate events found within a band can
automatically be associated with the band’s range of frequencies. It was shown
that this data conditioning procedure is successful in making data whiter most
(81% - 100%) of the time. Failures of the data conditioning are caused by in-
strumental “glitches” and by changes in the character and/or amplitude of the
noise. The performance of the data conditioning should continue to improve as
the stability of the detectors improves.

Chapter 3 introduced the Poisson test which can be used to flag segments of
data contaminated by nonlinear couplings. The test was applied to LIGO data
and it was demonstrated that along with glitches and data conditioning failures,
the test was able to pick out segments with correlations between data points. One
segment in particular that had a high Poisson test value had frequencies present
in its bicoherence that indicated that data samples were correlated with those
advanced or delayed by two samples.

Finally, Chapter 4 tackled the problems of recovering a gravitational wave
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signal from a network of detectors as well as discovering source information from
the recovered signal when the source is imperfectly modeled. Maximum entropy
is proposed as a method for signal recovery and is shown to perform better than a
simple inversion of the detector response or minimum mean square error (MMSE)
filtering for colored signals. This despite the fact that MMSE filtering assumes
more prior information about the signal than maximum entropy.

Maximum entropy was used to recover the signals from simulated supernova
detection using a waveform from an Ott et. al. [1] core-collapse model. The simu-
lations were done with signal strengths that corresponded to supernovae occurring
at various distances and with detector responses and white noise of amplitudes
characteristic of the LIGO detectors. The recovered signals were cross-correlated
with the waveforms in the Ott et.al. catalog and the cross-correlation taken as an
indication of which models most resembled the supernova that produced the orig-
inal signal. It was found that the recovered signals contained information about
the type of bounce the core underwent as well as information about the progenitor
mass, rotational energy, and differential rotation. It will be especially interesting
to repeat this analysis when waveforms from models incorporating more physi-
cal effects become available. For example, if waveforms from models that include
the effects of neutrinos have waveforms that have a high cross-correlation with
waveforms from models without neutrinos but with the same progenitor mass and
rotation characteristics it would indicate that waveforms from incomplete models
may still be very useful in analyzing a gravitational wave detection. If, on the
other hand, including more physics completely changes the waveforms then only
very complete models would be useful.

Maximum entropy was also tested under more realistic conditions such as using
real detector data for noise and recovering hardware injections where the response
of the detectors is measured. It was found to perform well under these more
realistic situations.

Gravitational wave astronomy holds the exiting potential of opening an entirely
new window on the universe. The projects described in this thesis represent a few
steps toward realizing that potential. Hopefully, the next few years will see the
first direct detection of gravitational waves and the beginning of a new era in

astronomy.



Appendix l \

Kalman filtered line parameters

The following tables specify the Kalman filtering parameters used during the S2
and S3 runs. The first column of each table gives the frequency band for which
each line was removed. Frequency band definitions are given in Appendix B. The
second column gives the line number. Lines with the same band and line number
are removed together with the same Kalman filter. As for the other columns,
fo is the frequency and @) the quality factor of each line. f. and Af are the
central frequency and size of the frequency band upon which the filter acts (see
Figure 2.3). v is the measurement noise of the background close to the line such

that the measurement noise covariance matrix

10
V:v(o 1). (A.1)



Band Index fo fe Q Af v
A2 1 184.718 184 31000 8 3.312e-04
B2 1 258.606 258 32000 8 1.706e-06
B2 2 295.550 295 49000 8 1.154e-05
C2 1 406.380 406 51000 8 1.063e-06
C2 2 465.694 465 78000 8 5.161e-07
D2 1 546.068 546 91000 8 5.282e-07
D2 2 564.070 566 94000 16 9.738e-07
D2 2 566.102 566 142000 16 9.738e-07
D2 2 568.050 566 95000 16 9.738e-07
D2 2  568.102 566 142000 16 9.738e-07
D2 3 591.098 589 74000 8 3.995e-07
E2 1 775.816 775 78000 8 5.773e-07
E2 2 812760 812 68000 8 3.443e-07
E2 3 886.646 886 148000 8 3.106e-07
E2 4 931.386 931 233000 8 3.247e-07
F2 1 1366.803 1369 10000 8 3.543e-07
F2 2 1108.308 1108 277000 8 2.657e-07
F2 3 1182.194 1182 296000 8 2.833e-07
F2 4 1256.082 1254 628000 8 3.850e-07
F2 5 1329.970 1330 332000 8 3.385e-07
G2 1 1403.856 1403 351000 8 3.273e-07
G2 2 1551.632 1551 388000 8 3.630e-07
G2 3 1625.482 1628 406000 8 3.952e-07
G2 4 1699.404 1699 425000 8 3.948e-07
H2 1 1773.292 1773 443000 8 3.725e-07
H2 2 1847.180 1847 462000 8 3.256e-07
H2 3 1862.750 1866 465000 8 3.435e-07
H2 3 1862.772 1866 465000 8 3.435e-07

Table A.1. Hanford 4-km, S2 Kalman line parameters
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Band Index fo fe Q Af v
A2 1 162.000 162 405000 16 2.186e-05
B2 1 295.800 295 49000 16 6.849e-07
C2 1 406.724 406 102000 8 4.927e-07
C2 2 465.708 465 78000 8 5.676e-07
C2 3 486.000 486 122000 8 2.859e-07
D2 1 510.720 510 800 4 1.500e-06
D2 2 591.598 591 99000 8 1.902e-07
E2 1 698.454 698 134000 8 1.202e-07
E2 1 698.565 698 152000 8 1.202e-07
E2 1 698.643 698 152000 8 1.202e-07
E2 1 699.378 698 175000 8 1.202e-07
E2 2 931.418 931 155000 8 8.416e-08
E2 3  961.848 961 160000 16 6.777e-08
E2 4 972.000 972 162000 16 7.122e-08
E2 5 988.080 988 35000 8 6.957e-08
F2 1 1257.138 1254 314000 8 5.746e-08
G2 1 1719.500 1719 4000 8 8.180e-08
G2 2 1504.790 1506 5000 8 5.541e-08
G2 3 1528.240 1528 5000 8 7.736e-08
G2 4 1496.400 1496 5000 8 8.103e-08
G2 5 1453.790 1453 182000 8 7.085e-08
G2 5 1453.802 1453 103000 8 7.085e-08
G2 6 1463.540 1463 10000 8 5.882e-08
G2 7 1472570 1472 5000 8 6.129e-08
G2 8 1481.470 1481 5000 8 6.348e-08
G2 9 1626.890 1626 406000 8 7.015e-08
G2 0 1689.160 1689 5000 8 7.923e-08
H2 1 1830.470 1830 5000 8 6.234e-08
H2 2 1862.834 1866 465000 8 6.956e-08
H2 3 1996.644 1996 499000 8 4.234e-08
H2 4 1976.196 1974 494000 8 7.671e-08
H2 5 1902.600 1903 5000 8 7.636e-08
H2 5 1903.500 1903 5000 8 7.636e-08

Table A.2. Hanford 2-km, S2 Kalman line parameters
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Band Index fo fe Q Af v
A2 1 140.605 140 2200 8 1.062e-07
A2 2  187.580 187 19000 8 3.299e-08
B2 1 221.206 221 55000 8 7.070e-08
B2 2 234.474 234 20000 8 1.649e-08
B2 3  281.370 281 20000 8 2.263e-08
B2 4 294.940 294 37000 8 8.962e-08
D2 1 516.146 516 86000 8 7.346e-08
D2 2 589.882 589 147000 16 4.128e-08
E2 1 737.352 737 184000 16 7.254e-08
E2 2 811.088 811 135000 16 8.782e-08
E2 3  884.822 884 147000 16 8.561e-08
E2 4 958.558 958 240000 16 7.763e-08
F2 1 1079.750 1080 3000 8 3.251e-08
F2 2 1106.028 1106 553000 8 3.191e-08
F2 3 1139.650 1140 3000 8 3.150e-08
F2 4 1179.764 1180 295000 8 3.249e-08
F2 5 1199.650 1200 3000 8 3.144e-08
F2 6 1243.700 1243.5 300000 8 5.670e-08
F2 7 1247.160 1247 300000 8 2.503e-08
F2 8 1260.000 1260 3000 8 3.449e-08
F2 9 1319.630 1319.63 3000 8 3.656e-08
F2 10 1327.234 1327 313000 8 3.532e-08
Table A.3. Livingston 4-km, S2 Kalman line parameters
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Band Index fo fe Q Af v
G2 1 1400.940 1400.97 350000 8 4.026e-08
G2 2 1407.100 1407.1 3500 8 4.177e-08
G2 3 1412.070 1412.07 300000 8 4.170e-08
G2 4 1415.020 1415 300000 8 3.095e-08
G2 5 1428.000 1428 500000 8 7.034e-08
G2 6 1431.500 1432 600000 8 2.771e-10
G2 7 1437.600 1437.6 359000 8 4.829e-08
G2 8 1439.530 1440 3000 8 4.316e-08
G2 9 1474.704 1478 737000 8 4.863e-08
G2 10 1500.000 1500 3000 8 4.743e-08
G2 11 1548.440 1548 387000 8 4.658e-08
G2 12 1559.500 1559.5 3000 8 5.006e-08
G2 13 1612.320 1612.32 50000 8 8.461e-10
G2 14 1615.880 1616 60000 8 3.588e-10
G2 15 1619.950 1619.95 80000 8 5.179e-10
G2 16 1620.200 1620.2 3000 8 5.463e-08
G2 17 1622.174 1622.17 405000 8 9.248e-08
G2 18 1680.000 1680 300 8 8.957e-08
G2 19 1695.910 1695.91 847000 8 9.165e-08
H2 1 1769.646 1769.65 442000 8 5.394e-08
H2 2 1799.500 1799.5 6000 8 5.335e-08
H2 3 1843.380 1843.38 921000 8 4.973e-08
H2 4 1860.100 1860.1 3000 8 4.797e-08
H2 5 1917.116 1917.12 479000 8 4.021e-08
H2 6 1920.000 1920 3000 8 4.027e-08
H2 7 1979.500 1979.5 3000 8 3.024e-08
H2 8 1990.850 1990.85 497000 8 3.012e-08
H2 9 2031.414 2028 1013000 8 2.911e-08
H2 10 2032.600 2034 1013000 8 2.142e-08
H2 11 2039.500 2039.5 3000 8 2.754e-08

Table A.4. Livingston 4-km, S2 Kalman line parameters continued



Band Index fo fe Q Af v
A3 1 184.721 184.50 57439 8 8.5812e-07
A3 2 178.344 178.00 5360 8 7.8817e-07
B3 1 295553 294.50 90460 12 3.3275e-06
B3 1 296.286 294.50 59248 12 3.3275e-06
B3 1 294.820 294.50 59754 12 3.3275e-06
B3 2 258.609 258.25 78708 8 9.3666e-07
B3 3 221.665 221.50 67922 8 7.1649e-07
C3 1 406.385 405.50 121361 16 2.6095e-06
C3 1 407.119 405.50 69779 16 2.6095e-06
C3 1 410.098 405.50 27171 16 2.6095e-06
C3 1 405.653 405.50 71470 16 2.6095e-06
C3 2 443.330 443.00 132723 8 1.7300e-06
C3 3 465.693 465.50 121331 8 1.7060e-06
D3 1 591.106 590.25 177343 12 1.8413e-06
D3 1 590.373 590.25 124736 12 1.8413e-06
D3 1 591.840 590.25 122069 12 1.8413e-06
D3 2 517.218 517.00 151213 8 1.5553e-06
D3 3 628.050 627.75 183616 8 1.0631e-06
D3 4 546.0562 545.75 104658 8 1.4594e-06
D3 5 566.102 563.75 132537 16 2.4088e-06
D3 5 564.067 563.75 111928 16 2.4088e-06
D3 5 568.101 563.75 139885 16 2.4088e-06
D3 6 554.162 554.00 145531 8 1.4378e-06
D3 7 535.066 534.75 32872 8 1.5853e-06
D3 7 534.900 534.75 81605 8 1.5853e-06
E3 1 738.883 738.00 220593 12 1.3913e-06
E3 1 739.616 738.00 134574 12 1.3913e-06
E3 1 738.150 738.00 142383 12 1.3913e-06
E3 2 775.827 775.50 230807 8 7.9951e-07
E3 3 812.771 812.50 241657 8 7.3486e-07
F3 1 886.660 885.75 245345 12 1.0426e-06
F3 1 887.393 885.75 165479 12 1.0426e-06
F3 1 885.926 885.75 169739 12 1.0426e-06
F3 2 931.385 931.00 249564 8 7.0324e-07
F3 3 997.491 997.25 283184 8 17.3332e-07
F3 4 923.601 923.25 257940 8 6.9436e-07
F3 5 947.750 947.50 295644 8 7.1309e-07
F3 6 849.715 849.50 176666 8 7.0975e-07
F3 7 902.250 902.00 226767 8 6.9790e-07
F3 8 880.339 880.00 147200 8 7.8983e-07

Table A.5. Hanford 4-km, S3 Kalman line parameters
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Band Index fo fe Q Af v
G3 1 1256.100 1255.25 353120 12 1.7324e-06
G3 1 1256.834 1255.25 244113 12 1.7324e-06
G3 1 1255.368 1255.25 251989 12 1.7324e-06
G3 2 1329.989 1329.00 370711 12 1.9393e-06
G3 2 1330.723 1329.00 248832 12 1.9393e-06
G3 2 1329.256 1329.00 256971 12 1.9393e-06
G3 3 1182.212 1182.00 334731 8 1.0211e-06
G3 4 1108.324 1108.00 315056 8 8.6505e-07
G3 5 1293.045 1292.75 347216 8 1.2347¢-06
G3 6 1071.380 1071.00 297310 8 7.9759e-07
G3 7 1145.268 1145.00 308879 8 9.2550e-07
G3 8 1219.156 1219.00 317695 8 1.0936e-06
G3 9 1360.250 1360.00 340112 8 1.5423e-06
G3 0 1239.750 1239.50 359985 8 1.1568e-06
H3 1 1442.000 1441.75 534074 12 3.2950e-06
H3 1 1442.733 1441.75 300611 12 3.2950e-06
H3 2 1625.542 1625.25 432878 8 2.5889¢-06
H3 3 1699.430 1699.25 441708 8 2.8208e-06
H3 4 1551.653 1551.50 419329 8 2.2518e-06
H3 5 1663.750 1662.25 514580 12 4.0169e-06
H3 5 1662.486 1662.25 395461 12 4.0169e-06
H3 6 1477.765 1477.50 370571 8 5.0368e-06
H3 7 1672.750 1672.50 531144 8 2.6860e-06
H3 8 1577.250 1577.00 487712 8 2.3030e-06
H3 9 1426.684 1426.50 153660 8 2.2018e-06
H3 0 1486.204 1486.00 274980 8 2.1738e-06
I3 1 1773.318 1773.00 462004 8 3.7692e-06
I3 2 1847.207 1847.00 471483 8 2.7871e-06
I3 3 1994.983 1994.75 512935 8 1.8392e-06
I3 4 1862.771 1862.50 426324 8 2.7065e-06
R3 1 931.386  931.25 294878 12 9.6572e-07
R3 1 933.750 931.25 200081 12 9.6572e-07
R3 2 923.608 923.50 241796 16 1.3367e-06
R3 2 927.250 923.50 217876 16 1.3367e-06

Table A.6. Hanford 4-km, S3 Kalman line parameters continued
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Band Index fo fe Q Af v
A3 1 184.870 184.50 59067 8 1.7559e-06
A3 2 137.625 137.25 8695 8 2.525%e-06
A3 2 137.439 137.25 8575 8 2.525%e-06
A3 2 137.784 137.25 8364 8 2.5259%e-06
A3 3 155.642 155.25 7833 8 3.2137e-05
A3 4 150.355 150.00 11641 8 2.5948e-06
B3 1 295.792 295.50 88803 8 1.7635e-06
B3 2 258.819 257.50 69907 12 1.6850e-06
B3 2 257.620 257.50 15151 12 1.6850e-06
B3 2 259.403 257.50 19570 12 1.6850e-06
B3 3 221.844 221.50 64724 8 2.9281e-06
B3 4 267.000 266.75 98617 8 1.0981e-06
C3 1 432999 431.50 81801 16 &8.5591e-07
C3 1 433.173 431.50 24919 16 8.5591e-07
C3 1 432.829 431.50 25124 16 8.5591e-07
C3 1 432.231 431.50 30828 16 8.5591e-07
C3 1 433.761 431.50 30817 16 8.5591e-07
C3 1 434.398 431.50 23383 16 8.5591e-07
C3 1 431.597 431.50 24312 16 8.5591e-07
C3 2 406.715 406.50 122006 8 4.4874e-07
C3 3 443.689 443.50 130522 8 4.1669¢e-07
C3 4 400.002 399.75 81434 8 4.6002e-07
D3 1 591.585 591.25 176834 8 4.3434e-07
D3 2 517.637 517.50 123820 16 7.5280e-07
D3 2 520.865 517.50 121268 16 7.5280e-07
D3 3 554.611 554.25 140740 8 4.8240e-07
D3 4 512.726 512.50 132403 8 3.9184e-07
D3 5 529.003 528.75 111044 8 4.0161e-07
D3 6 537.142 536.75 125030 8 3.1701e-06
D3 7 545.279 545.00 141549 8 4.8657e-07
D3 8 569.695 569.50 127039 8 4.5525e-07
D3 9 534.000 533.75 189520 8 4.2397e-07
D3 10 551.299 551.00 44174 8 4.3647e-07
D3 11 570.772 570.50 118490 8 4.5411e-07

Table A.7. Hanford 2-km, S3 Kalman line parameters
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Band Index fo fe Q Af v
E3 1 739.481 739.25 211902 12 1.4206e-07
E3 1 740.604 739.25 190191 12 1.4206e-07
E3 2 776.455 773.00 213934 16 3.3788e-07
E3 2 773.158 773.00 192801 16 3.3788e-07
E3 3 813.429 813.25 212025 8 7.6753e-08
E3 4 716.189 716.00 150390 8 2.5970e-07
E3 5 708.050 707.75 168302 8 1.0928e-07
E3 6 765.020 764.75 197130 8 8.9535e-08
E3 7 724.327 724.00 150323 8 2.4429e¢-07
E3 8 732.467 732.25 175248 8 9.8033e-08
E3 9 801.000 800.75 269610 8 7.8696e-08
F3 1 866.000 865.75 267239 8 8.1725e-08
F3 2 1000.000 998.00 361785 12 7.7418e-08
F3 2 998.299 998.00 263271 12 7.7418e-08
F3 3 887.377  887.00 251798 8 6.2372e-08
G3 1 1331.066 1330.75 379092 8 5.0779e-08
G3 2 1298.999 1298.75 359094 8 4.9757e-08
G3 3 1257.118 1256.75 357617 8 8.9992e-08
G3 4 1072.247 1072.00 297874 8 5.5602e-08
G3 5 1183.169 1183.00 325128 8 5.1539e-08
H3 1 1626.858 1626.50 467533 8 6.0395e-08
H3 2 1700.806 1700.50 461920 8 6.6547e-08
H3 3 1552.910 1552.75 426357 8 5.8778e-08
H3 4 1478.962 1478.75 372932 8 5.4200e-08
H3 5 1587.099 1586.75 139230 8 7.8578e-07
H3 6 1512.723 1512.50 67244 8 8.8186e-08
H3 7 1474.468 1474.25 250750 8 6.6713e-08
H3 8 1418.361 1418.00 273790 8 5.9116e-08
R3 1 903.373 903.00 194739 8 2.6961e-07
R3 2 931.418 927.50 250128 16 1.1510e-07
R3 2 927.790 927.50 243060 16 1.1510e-07
R3 3 911.514 911.25 166713 8 7.2944e-08
R3 4  895.236  895.00 230290 8 6.5898e-08
R3 5 935.928 935.75 227913 8 6.8618e-08
R3 6 919.652 919.50 196327 8 5.9984e-08

Table A.8. Hanford 2-km, S3 Kalman line parameters continued
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Band Index fo fe Q Af v
A3 1 143.147 142.75 44455 8 1.6043e-06
A3 2 190.862 190.50 50761 8 2.0054e-06
A3 3 131.857 131.50 21600 8 1.7299¢-06
B3 1 237788 237.50 21486 16 4.0554e-06
B3 1 241.544 23750 13344 16 4.0554e-06
B3 1 241.960 237.50 26395 16 4.0554e-06
B3 2 251.756 251.50 14331 8 2.3387e-06
B3 3 294.937 294.75 79712 8 2.2760e-06
B3 4 221.203 221.00 54617 8 2.2223e-06
B3 5 242169 242.00 39484 8 2.4708e-06
B3 6 258.070 257.75 56511 8 2.3401e-06
C3 1 405.538 405.25 135179 8 1.7829e-06
C3 2 442.405 442.25 118199 8 1.6988e-06
D3 1 516.139 515.75 118847 8 1.3204e-06
D3 2 589.874 589.50 174962 8 1.1622e-06
D3 3 626.742 626.50 181664 8 1.2686e-06
D3 4 553.007 552.75 146169 8 1.2159e-06
E3 1 737342 737.00 215957 8 1.0476e-06
E3 2 811.076 810.75 240573 8 9.4177e-07
E3 3 774.210 774.00 202976 8 9.8769¢-07
F3 1 884.803 884.50 213849 8 9.1640e-07
F3 2 995.410 995.25 269029 8 9.7339e-07
F3 3 921.672 921.50 253206 32 2.8254e-06
F3 3 925.606 921.50 112878 32 2.8254e-06
F3 3 929.264 921.50 101837 32 2.8254e-06
F3 3 929.726 921.50 36147 32 2.8254e-06
F3 3 933.609 921.50 193828 32 2.8254e-06
F3 4 847.944 847.75 250623 8 9.4388e-07
F3 5 926.090 925.75 35257 8 1.5033e-06
F3 5 926.049 925.75 142469 8 1.5033e-06
F3 6 939.556 939.25 65398 8 9.5486e-07
F3 7 915.825 915.50 43819 8 9.1476e-07
F3 8 958.543 958.25 225380 8 9.6067e-07

Table A.9. Livingston 4-km, S3 Kalman line parameters
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Band Index fo fe Q Af v
G3 1 1106.013 1105.75 302425 8 1.1182e-06
G3 2 1327.216 1327.00 388724 8 1.8624e-06
G3 3 1253.482 1253.25 378205 8 1.5780e-06
G3 4 1179.747 1179.50 342665 8 1.3382¢-06
G3 5 1142.880 1142.50 312506 8 1.2131e-06
G3 6 1216.615 1216.25 299869 8 1.4450e-06
G3 7 1364.084 1363.75 231200 8 1.9808e-06
G3 8 1069.147 1068.75 311402 8 1.0640e-06
G3 9 1334.164 1334.00 115762 8 1.9289¢-06
H3 1 1695.887 1691.75 418000 16 6.2473e-06
H3 1 1692.000 1691.75 143086 16 6.2473e-06
H3 1 1692.439 1691.75 131536 16 6.2473e-06
H3 2 1474.684 1474.50 355958 8 2.4964e-06
H3 3 1548.419 1548.25 399960 8 2.7818e-06
H3 4 1622.153 1622.00 445296 8 2.8605e-06
H3 5 1511.551 1511.25 345779 8 2.6414e-06
H3 6 1437.819 1437.50 359454 8 2.6093e-06
H3 7 1585.289 1585.00 332578 8 2.8504e-06
I3 1 1769.621 1769.25 463945 8 2.4232¢-06
I3 2 1843.356 1843.00 492499 8 1.9138e-06
I3 3 1917.090 1916.75 530420 8 1.7582¢-06
I3 4 1957.703 1957.50 431212 8 1.6844e-06
I3 5 2031.437 2031.25 447453 8 1.7804e-06
I3 6 1867.219 1867.00 369746 8 1.7910e-06
I3 7 1806.487 1806.25 470439 8 2.1561e-06
I3 8 1990.826 1990.50 530886 8 1.6808e-06
I3 9 1761.500 1758.25 338749 16 4.9036e-06
I3 9 1758.472 175825 254851 16 4.9036e-06
R3 1 921.679 921.50 237196 8 9.2760e-07
R3 2 929.316 926.00 64017 16 1.8036e-06
R3 2 926.096 926.00 49790 16 1.8036e-06
R3 3 933.610 933.25 229576 8 9.6617e-07
R3 4 939.562 939.25 27715 8 9.5488e-07
R3 5 915.814 915.50 42268 8 9.1521e-07

Table A.10. Livingston 4-km, S3 Kalman line parameters continued
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Appendix B

Frequency Band Definitions and
Filters

The following tables give the band definitions and specify parameters for the low-
pass filters used in basebanding. Each band covers the frequency range from B, to
By; Hz. There are gaps in frequency coverage around the violin modes and violin
mode harmonics. The violin modes have a lot of power and can vary considerably
in power over short timescales, making them difficult to remove. Therefore, we
have chosen to avoid them. The R band is a narrow band chosen to correspond to
the frequency range of some bar detectors, allowing comparison with their results.

The lowpass filter used in the basebanding step of data conditioning is cre-
ated using MATLAB’s [84] firpm function which uses the Parks McClellan algo-
rithm to find an optimal filter. The filter b is calculated via the command b =
firpm(n,f,a,w) where n is the length of the filter, f = [0, T},, Th;, 1]’ is a vector
of frequencies (as fraction of Nyquist) and a = [1, 1, 0, 0]’ are the amplitudes of
the filter’s frequency response at these frequencies. w = [1, 1]’ specifies the allowed
amount of passband and stopband ripple (see [36]). n, T},, and T}; are given in the
tables.



Band Blo B}”‘ n fFlo Thi
A2 128 192 52 0.4688 0.5469
B2 192 320 56 0.4688 0.5391
C2 384 512 32 0.5000 0.6250
D2 512 640 56 0.4688 0.5391
E2 704 1024 70 0.5000 0.5563
F2 1065 1365 48 0.4833 0.5667
G2 1408 1708 48 0.4833 0.5667
H2 1758 2048 40 0.5000 0.5862
R2 900 930 40 0.5000 0.6000

Table B.1. S2 Bands

Band B, Bni n Ty Thi
A3 128 192 26 0.4375 0.5938
B3 192 320 36 0.4531 0.5625
C3 384 512 32 0.4531 0.5781
D3 512 640 32 0.4531 0.5781
E3 704 832 50 0.4688 0.5469
F3 832 1024 76 0.4792 0.5312
G3 1065 1365 74 0.4800 0.5333
H3 1408 1708 74 0.4800 0.5333
I3 1758 2048 72 0.4793 0.5345
R3 890 940 20 0.4200 0.6200

Table B.2. S3 Bands

Band B, By n T, Thi
A4 96 192 38 0.4583 0.5625
B4 192 320 32 0.4531 0.5781
C4 384 512 28 0.4531 0.5938
D4 512 640 28 0.4531 0.5938
E4 704 832 50 0.4688 0.5469
F4 832 1024 76 0.4792 0.5312
G4 1065 1365 74 0.4800 0.5333
H4 1408 1708 74 0.4800 0.5333
14 1758 2048 72 0.4793 0.5345
R4 890 940 20 0.4375 0.5833

Table B.3. S4 Bands
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Appendix

Line Regression Parameters

The following tables give the parameters used in line regression for S2 and S3 for
each detector. The parameters are given by frequency band and frequency band
definitions may be found in Appendix B. There are two types of lines that are
regressed: power lines at 60 Hz and harmonics caused by the AC oscillations of
the US power grid and calibration lines which are injected into the interferome-
ters by wiggling mirrors and used for calibration purposes. Parameters used to
remove power lines are marked as “power” in the table while those used to remove
calibration lines are designated “calib”.

When line regression is performed, data from an environmental or interferom-
eter channel is put through the same conditioning and bandlimiting procedure
(minus Kalman filtering) as the data from the gravitational wave channel of the
detector. An ARX model is then found that relates the regression channel data
to the detector data. The regression channel is filtered using the ARX model and
the result subtracted from the detector data. If the bandlimited detector data is
stored in the variable band_data and the bandlimited regression data in band_reg,

the lines can be regressed using the following MATLAB [84] commands:

data= iddata(band_data, band reg);

model = arx(data, orders);

b = model.b;

filt data = band data-filter(b,1,band reg);

orders is a vector whose three elements are given in the tables below.
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Two channels are listed for some of the power line regression parameters be-
cause, in those cases, regression based on no single channel could remove both
the even and odd harmonics. When two channels are listed, the power lines are
subtracted as much as possible with the first channel and then the filtered data is

used to find the b coefficients for the second channel:

datal = iddata(band_data’, band.regl’);
modell = arx(datal, ordersi);

bl = modell.b;

filt datal = band data-filter(bl,1,band regl);
data2 = iddata(filt_datal’, band reg2’);
model2 = arx(data2, orders2);

b2 = model2.b;

When the data are filtered, both sets of channels and filters are used:

filt_data = band data-filter(bl,1,band_regl)
- filter(b2,1,band reg2);

This regression approach, where the filter for the second channel is dependent on
regression applied with the first channel is specified by the column labeled Dep.
in the tables below. A nonzero Dep. value indicates that dependent regression is
used and the number given is the Index value of the regression parameters that
should be applied first.

As can be seen from Tables C and C, regression is not used to remove power
lines from Livingston 4-km data above 1024 Hz. Unfortunately, no suitable channel
could be found. L1:LSC-POB_Q was not correlated enough with the power lines
to be used to remove them and the environmental channels contain no information
at those frequencies because they are sampled at 2048Hz. Instead, these lines are
treated with a Kalman filter which does not perform as well as regression on power

lines but is able to accomplish some reduction of power.
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Band Index Type Channel orders  Dep.
A2 1 power HO:PEM-LVEA2_V1 0 6 0 0
A2 2 calib HLI:LSC-ETMX_EXCDAQ 0 6 0 0
B2 1 power HO:PEM-LVEA2 V1 0 20 O 0
C2 1 power HO:PEM-LVEA2 V1 0 16 0 0
D2 1 power HO:PEM-LVEA2 V1 0 8 0 0
E2 1 power HO:PEM-LVEA2 V1 0 9 0 0
E2 2 calib HLI:LSC-ETMX_EXCDAQ 0 8 0 0
F2 1 power HI1:LSC-POB_Q 0 90 O 0
G2 1 power HI1:LSC-POB_Q 0 90 O 0
H2 1 power HI1:LSC-POB_Q 0 9 0 0
R2 1 power HO:PEM-LVEA2_V1 0 10 O 0

Table C.1. Hanford 4-km, S2 line regression parameters

Band Index Type Channel orders  Dep
A2 1 power HO:PEM-LVEA2_.V3 0 6 0 0
A2 2 calib H2:LSC-ETMX_EXCDAQ 0 6 0 0
B2 1 power HO:PEM-LVEA2_V3 0 40 O 0
C2 1 power HO:PEM-LVEA2_V3 0 50 O 0
D2 1 power HO:PEM-LVEA2_V3 0 40 O 0
E2 1 power HO:PEM-LVEA2_.V3 0 9 0 0
E2 2 calib H2:LSC-ETMX EXCDAQ 0 8 0 0
F2 1 power H2:LSC-POB_Q 0 9 0 0
G2 1 power H2:LSC-POB_Q 0 90 O 0
H2 1 power H2:LSC-POB_Q 0 90 O 0
R2 1 power HO:PEM-LVEA2_V3 0 10 O 0

Table C.2. Hanford 2-km, S2 line regression parameters
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Band Index Type Channel orders  Dep.
A2 1 power LO:PEM-LVEA_V1 0 6 0 0
A2 2 calib L1:LSC-ETMX_EXC_.DAQ 0 6 0 0
B2 1 power LO:PEM-RADIO_LVEA 0 50 O 0
B2 2 power LO:PEM-LVEA_V1 0 50 O 1
C2 1 power LO:PEM-RADIO_LVEA 0 50 O 0
C2 2 power LO:PEM-LVEA_V1 0 50 0 1
D2 1 power LO:PEM-RADIO_LVEA 0 70 0 0
D2 2 power LO:PEM-LVEA_V1 0 70 0 1
E2 1 power LO:PEM-RADIO_LVEA 0 90 0 0
E2 2 power LO:PEM-LVEA_V1 0 90 0 1
E2 3 power L1:LSC-ETMX_EXC.DAQ 0 8 0 1
R2 1 power LO:PEM-LVEA_V1 0 10 0 0
R2 2 calib L1:LSC-ETMX_EXC_DAQ 0 10 0 0
Table C.3. Livingston 4-km, S2 line regression parameters
Band Index Type Channel orders Dep.
A3 1 power HO:PEM-LVEA2_V1 0 2 0 0
A3 2 calib HI1:LSC-DARM_CTRL_EXC_DAQ 0 10 0 0
B3 1 power HO:PEM-LVEA2_V1 0 150 0 0
C3 1 power HO:PEM-LVEA2 V1 0 16 0 0
D3 1 power HO:PEM-LVEA2 V1 0 8 0 0
E3 1 power HO:PEM-LVEA2 V1 0 150 0 0
F3 1 calib HI1:LSC-DARM_CTRL_EXC_DAQ 0 4 0 0
F3 2 power HO:PEM-LVEA2_V1 0 50 0 1
G3 1 power HI1:LSC-POB_Q 0 9 0 0
H3 1 power HI1:LSC-POB_Q 0 9 0 0
I3 1 power HI1:LSC-POB_Q 0 10 0 0
R3 1 power HO:PEM-LVEA2_V1 0 10 0 0

Table C.4. Hanford 4-km, S3 line regression parameters
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Band Index Type Channel orders Dep.
A3 1 power HO:PEM-LVEA2_V3 0 2 0 0
A3 2 calib H2:LSC-DARM_CTRL_EXC_DAQ 0 6 0 0
B3 1 power HO:PEM-LVEA2_V3 0 50 O 0
C3 1 power HO:PEM-LVEA2_V3 0 50 O 0
D3 1 power HO:PEM-LVEA2_V3 0 40 O 0
E3 1 power HO:PEM-LVEA2_V3 0 50 O 0
F3 1 calib H2:LSC-DARM_CTRL_EXC_DAQ 0 10 0 0
F3 2 power HO:PEM-LVEA2_V3 0 150 O 0
G3 1 power H2:LSC-POB_Q 0 150 0 0
H3 1 power H2:LSC-POB_Q 0 150 0 0
H3 2 calib H2:LSC-DARM_CTRL_EXC_.DAQ 0 10 0 0
R3 1 power HO:PEM-LVEA2_.V3 0 50 0 0

Table C.5. Hanford 2-km, S3 line regression parameters

Band Index Type Channel orders Dep.
A3 1 power LO:PEM-LVEA_V1 0 2 0 0
A3 2 calib LI1:LSC-DARM_CTRL_EXC_DAQ 0 22 0 0
B3 1 power LO:PEM-RADIO_LVEA 0 2 0 0
B3 2 power LO:PEM-LVEA_V1 0 2 0 1
C3 1 power LO:PEM-RADIO_LVEA 0 2 0 0
C3 2 power LO:PEM-LVEA_V1 0 50 0 1
D3 1 power LO:PEM-RADIO_LVEA 0 8 0 0
D3 2 power LO:PEM-LVEA_V1 0 50 0 1
E3 1 power LO:PEM-RADIO_LVEA 0 90 O 0
E3 2 power LO:PEM-LVEA_V1 0 90 0 1
F3 1 power LO:PEM-RADIO_LVEA 0 90 O 0
F3 2 power LO:PEM-LVEA_V1 0 90 0 1
F3 3 calib L1:LSC-DARM_CTRL_EXC.DAQ 0 4 0 0
R3 1 power LO:PEM-LVEA_V1 0 10 0 0
R3 2 calib L1:LSC-DARM_CTRL_EXC_DAQ 0 10 0 0

Table C.6. Livingston 4-km, S3 line regression parameters



Appendix D

Data conditioning PSDs

Below are power spectral density (PSD) plots that show the effects of different
data conditioning steps. Each plot shows the effects of data conditioning for a
different frequency band and detector. The frequency band definitions are given
in Appendix B. The plots are made with data from GPS time 756715873 which
is 300 seconds in duration. The data conditioning uses filters calculated on the
previous 300 seconds. In each plot, the blue curve is the PSD of data that has
been basebanded only, the green curve shows the effect of line removal including
Kalman filtering and line regression, and the red curve is the PSD of the fully

conditioned data including whitening.



PSD (dB)

-100

-110

-120

Hanford 4-km detector, band A3

— Basebanded Data
Lines Removed
— Whitened

130 140 150 160 170 180 190
Frequency (Hz)
Hanford 4-km detector, band B3
— Basebanded Data
i Lines Removed 7
—— Whitened
200 220 240 260 280 300

Frequency (Hz)

117



Hanford 4-km detector, band C3

— Basebanded Data
Lines Removed
— Whitened

400

420

Hanford 4-km detector, band D3

440 460
Frequency (Hz)

480

500

W1

— Basebanded Data
Lines Removed
—— Whitened

bl
MWW ANl ‘f} l‘u'/\wmw

-100

520

540

560 580
Frequency (Hz)

600

620

640

118



PSD (dB)

-100

-105

-110

Hanford 4-km detector, band E3

fi Mv,ﬂ, ol \\\, l M»‘*

— Basebanded Data
Lines Removed
— Whitened

|

720 740 760 780 800 820
Frequency (Hz)

Hanford 4-km detector, band F3

— Basebanded Data
Lines Removed 1
—— Whitened

850 900 950 1000
Frequency (Hz)

119



PSD (dB)

120

Hanford 4-km detector, band G3

PSD (dB)

_75 T T T
— Basebanded Data
Lines Removed
— Whitened
_80 - i
_85 - n
90} ‘ N l 1
' L ot IS "\Mt Iy,
| M‘ L "‘," VW
W {WM“ ‘\“y "
_95 n
_100 Il Il Il Il Il Il
1100 1150 1200 1250 1300 1350
Frequency (Hz)
Hanford 4—-km detector, band H3
_55 T T
— Basebanded Data
Lines Removed
-60p —— Whitened i
_65 - n
_70 - i
_75 - n
_80 L
_85 L
-90

1450 1500 1550 1600 1650 1700
Frequency (Hz)



PSD (dB)

-100

-105

PSD (dB)

-110

-115

-120

Hanford 4-km detector, band I3

i Lines Removed

— Basebanded Data

— Whitened

i

i ,| l ’
I | v“‘ H ‘(

1800 1850 1900 1950 2000
Frequency (Hz)

Hanford 4-km detector, band R3

— Basebanded Data
Lines Removed
—— Whitened R

M | il o L AU b Wl .
(VB i A1 i 8 WO (A VI LA AT r
A P

890 900 910 920 930 940

Frequency (Hz)

121



PSD (dB)

PSD (dB)

Hanford 2—km detector, band A3

— Basebanded Data
Lines Removed 8
— Whitened

O Il Il Il Il
130 140 150 160 170

Frequency (Hz)

Hanford 2—km detector, band B3

180 190

— Basebanded Data
Lines Removed
—— Whitened

200 220 240 260 280
Frequency (Hz)

300 320

122



PSD (dB)

PSD (dB)

-80

-90

-100

-110

-90

-100

-110

-120

Hanford 2—-km detector, band C3

— Basebanded Data | |
Lines Removed
— Whitened

420 440 460 480 500
Frequency (Hz)

Hanford 2—km detector, band D3

— Basebanded Data
Lines Removed
—— Whitened R

520 540 560 580 600 620 640

Frequency (Hz)

123



124

Hanford 2—-km detector, band E3
-80 w w w
— Basebanded Data
-85} Lines Removed
— Whitened

-100

PSD (dB)

-105

-110

-115

-120 ‘ ‘ ‘
720 740 760 780 800 820

Frequency (Hz)

Hanford 2—km detector, band F3
-40 ‘ ‘
— Basebanded Data
_col Lines Removed i
50 -
—— Whitened

-100 1

-110 X

_120 Il Il Il Il
850 900 950 1000

Frequency (Hz)



PSD (dB)

PSD (dB)

-100

-105

-110

-115

-120

-100

-105

-110

-115

-120

Hanford 2—-km detector, band G3

Lines Removed
— Whitened

— Basebanded Data

Frequency (Hz)

1100 1150 1200 1250 1300 1350
Frequency (Hz)
Hanford 2—km detector, band H3
— Basebanded Data
i Lines Removed 7
—— Whitened
1450 1500 1550 1600 1650 1700

125



PSD (dB)

PSD (dB)

126

Hanford 2—km detector, band I3

-95 ‘ ;
— Basebanded Data
Lines Removed
— Whitened
-100 R
-105 R
-110
-115
_120 I I I I I
1800 1850 1900 1950 2000
Frequency (Hz)
Hanford 2—km detector, band R3
_90 T T
— Basebanded Data
Lines Removed
-95¢ —— Whitened i
=100 1
-105 R
-110 1
-115F ||, T ! TN
L y&f Huv‘ﬂa)WEiA %Nuf hall M‘ I
/. “ d | |'~’ Ul i AT " \‘; '.\\,"
-120f ! o IV
_125 Il Il Il Il
890 900 910 920 930 940

Frequency (Hz)



127

Livingston 4-km detector, band A3

_30 T
— Basebanded Data
—40} Lines Removed
— Whitened
_50 - n

130 140 150 160 170 180 190
Frequency (Hz)

Livingston 4-km detector, band B3

-40 ‘ ‘
— Basebanded Data
Lines Removed
=501 —— Whitened ]
_60 - n

PSD (dB)

200 220 240 260 280 300 320
Frequency (Hz)



Livingston 4-km detector, band C3

-100

— Basebanded Data
Lines Removed
- — Whitened

| w.‘| “‘\ TN Y A 3
;‘,‘\,'lf’ ’,‘w bl """‘ o";")'}\/'"’ '11'.“\‘ R T 1y ,’M,\\I"“W'AM v ‘,N‘

-105

-105

-110

400 420 440 460 480 500
Frequency (Hz)

Livingston 4-km detector, band D3

— Basebanded Data
Lines Removed
—— Whitened

520 540 560 580 600 620
Frequency (Hz)

640

128



PSD (dB)

PSD (dB)

129

Livingston 4-km detector, band E3

-85 ‘ ‘ ‘ ‘
— Basebanded Data
Lines Removed
% — Whitened
_95 - a
-100f ‘ 1
’N}’ e e A A Ll ‘\M
flIndl TN VEN i ! \’ il il q “ L M
~105]|! M"‘ il AL WY I M T
_110 Il Il Il Il Il Il
720 740 760 780 800 820
Frequency (Hz)
Livingston 4-km detector, band F3
_20 T T
— Basebanded Data
-30f Lines Removed g
—— Whitened
_40 - a
_50 - a
_60 - a
_70 - i
_80 - i
-90
-100 e

850 900 950 1000
Frequency (Hz)



Livingston 4-km detector, band G3

_80 T T T
— Basebanded Data
-82f Lines Removed
— Whitened
_84 - i
_86 - n
. —88f R
m
Z
a —90r R
& ‘
_92 - l ‘ \
| | { l‘ ,(
-94j AL e AN «M W*M .
( /M "&Ml Nr |
_96 - | n
_98 - n
_100 Il Il Il Il Il Il
1100 1150 1200 1250 1300 1350
Frequency (Hz)
Livingston 4-km detector, band H3
_70 T T T
— Basebanded Data
Lines Removed
—— Whitened
_75 - n

PSD (dB)

1450 1500 1550 1600 1650 1700
Frequency (Hz)

130



PSD (dB)

131

Livingston 4-km detector, band 13

=70 ‘ ‘ ‘
— Basebanded Data
Lines Removed
-75+ — Whitened E
_80 - n
-85+ \ R
—90| V)/‘ I "
_95 - n
_100 1 1 1 1 1
1800 1850 1900 1950 2000
Frequency (Hz)
Livingston 4-km detector, band R3
or — Basebanded Data ||
Lines Removed
—— Whitened
_20 - n
_40 - n
_60 - n
_80 - n
-100
-120 : :

890 900 910 920 930 940
Frequency (Hz)



Appendix E

Rayleigh FOM Distributions

The Rayleigh figure-of-merit (FOM) is a measure of data conditioning performance.

It is calculated via

FOM — Rpsp _ O'PSD’/,UPSD’, (E.1)
Rpsp OpsSD / HPSD

where PSD is the power spectral density calculated on data that has only been
treated with the shaping filter and then basebanded and PSD’ is data that has
undergone the entire data conditioning process. A FOM < 1 indicates that the
line removal and whitening portions of data conditioning have been successful.
Below are plots showing the FOM per segment and distributions of FOM values
for each frequency band (frequency band definitions are given in Appendix B)
and detector over all non-overlapping 300 second long S3 segments. For most of
these segments, the FOM was less than one, indicating that data conditioning was

successful.
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Hanford 2-km, Band D3
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Figure E.14. Data conditioning FOM for Hanford 2-km detector, band D3
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Figure E.16. Data conditioning FOM for Hanford 2-km detector, band F3

4000 5000 6000 7000 8000 9000

Segment

1000 2000 3000

Hanford 2-km, Band F3

0.05 0.1 0.15 0.2 0.25 0.3 0.35
FOM

148



149

Hanford 2—-km, Band G3

T T T T T T T T T

0.8f

FOM
o
(o]

T

0.4

0 | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Segment

Hanford 2-km, Band G3
1200 T T T T T T T T T

1000

800

600

Number

400

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FOM

Figure E.17. Data conditioning FOM for Hanford 2-km detector, band G3
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Figure E.21. Data conditioning FOM for Livingston 4-km detector, band A3
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Figure E.26. Data conditioning FOM for Livingston 4-km detector, band F3
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Figure E.28. Data conditioning FOM for Livingston 4-km detector, band H3
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Figure E.29. Data conditioning FOM for Livingston 4-km detector, band I3
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