I am the good shepherd. The good shepherd lays down his life for the sheep. John 10:11 NIV
9-Review
Take this test as you would take a test in class. When you are finished, check your work against the answers. On this assignment round your answers to three decimal places unless otherwise directed.
- Perform the indicated row operations on \(\left[\begin{matrix} 2 & 4 & -6 \\ -8 & 1 & 2 \\ 0 & 3 & -4 \end{matrix}\right]\)
- Add four times the 1st row to the 2nd row.
- Multiply the 1st row by \(\frac{1}{2}\).
- Solve the system with Gaussian Elimination \(\left\{\begin{alignat}{4} x &-& 3y &+& 2z &=& 5 \\ -2x &+& y && &=& -4 \\ && 2y &-& z &=& -3 \end{alignat}\right.\)
- Is the matrix in reduced-row echelon form? \(\left[\begin{matrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{matrix}\right]\)
- Put the matrix into reduced-row echelon form. \(\left[\begin{matrix} 1 & -2 & 5 & 2 \\ 1 & 3 & 1 & 5 \\ 2 & -1 & 0 & 1 \end{matrix}\right]\)
- Perform the indicated operations.
- \(\left[\begin{matrix} 2 & -1 & 3 \\ 0 & 7 & -3 \end{matrix}\right] - \left[\begin{matrix} 4 & 0 & -4 \\ 2 & -2 & 3 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 3 \\ -2 & 5 \end{matrix}\right] + 2\left[\begin{matrix} -1 & 2 \\ 3 & 1 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & -1 & -2 \\ 0 & 3 & 1 & -2 \end{matrix}\right] \left[\begin{matrix} 3 & 0 \\ -1 & -2 \\ 2 & 5 \\ 1 & 1 \end{matrix}\right]\)
- Find the inverse of \(\left[\begin{matrix} 2 & -1 \\ -2 & 3 \end{matrix}\right]\)
- Find the inverse of \(\left[\begin{matrix} 1 & 0 & 1 \\ -1 & 2 & 4 \\ 2 & 1 & -1 \end{matrix}\right]\)
- Use an inverse matrix to solve \(\left\{\begin{align} x + z &= 5 \\ -x + 2y + 4z &= 11 \\ 2x + y - z &= -4 \end{align}\right.\)
- Find \(\left|\begin{matrix} 2 & -1 \\ 4 & -3 \end{matrix}\right|\)
- Find \(\left|\begin{matrix} 1 & -2 & -1 \\ 0 & -3 & 2 \\ 0 & 2 & 2 \end{matrix}\right|\) using the shortcut.
- Find \(\left|\begin{matrix} 3 & 1 & -2 \\ 4 & 2 & 0 \\ 1 & -2 & -1 \end{matrix}\right|\) using the expansion by cofactors.
- Use Cramer's Rule to solve \(\left\{\begin{align} 2x + 3y - z &= 0 \\ y + z &= 0 \\ -x + 2y - z &= -10 \end{align}\right.\)
- Find the area of triangle with vertices (−3, 2), (2, −1), (3, 5).
- Use a determinant to find the equation of the line through (3, 1) and (−2, 4).
- Use \(\left[\begin{matrix} 2 & 3 \\ -1 & 1 \end{matrix}\right]\) to encode the message I GOT A.
Answers
- \(\left[\begin{matrix} 2 & 4 & -6 \\ 0 & 17 & -22 \\ 0 & 3 & -4 \end{matrix}\right]\)
- \(\left[\begin{matrix} 1 & 2 & -3 \\ -8 & 1 & 2 \\ 0 & 3 & -4 \end{matrix}\right]\)
- (1, −2, −1)
- No, the 2 and 5 should be zeros.
- \(\left[\begin{matrix} 1 & 0 & 0 & \frac{20}{19} \\ 0 & 1 & 0 & \frac{21}{19} \\ 0 & 0 & 1 & \frac{12}{19} \end{matrix}\right]\)
- \(\left[\begin{matrix} -2 & -1 & 7 \\ -2 & 9 & -6 \end{matrix}\right]\)
- \(\left[\begin{matrix} -1 & 7 \\ 4 & 7 \end{matrix}\right]\)
- \(\left[\begin{matrix} -3 & -11 \\ -3 & -3 \end{matrix}\right]\)
- \(\left[\begin{matrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{matrix}\right]\)
- \(\left[\begin{matrix} \frac{6}{11} & -\frac{1}{11} & \frac{2}{11} \\ -\frac{7}{11} & \frac{3}{11} & \frac{5}{11} \\ \frac{5}{11} & \frac{1}{11} & -\frac{2}{11} \end{matrix}\right]\)
- (1, −2, 4)
- −2
- −10
- 18
- (4, −2, 2)
- \(\frac{33}{2}\)
- 3x + 5y = 14
- 18, 27, −1, 36, 40, 60, 2, 3