Joon Hyuk Kang, Publications

Refereed papers 

  1. Kang, J.H. 2013. Steady state solutions to general competition and cooperation models. Communications in Mathematics and Applications, 4.3: 201-212. 
  2. Kang, J.H. 2013. Coexistence conditions for competing or cooperating species of animals. Indian Journal of Fuzzy Mathematics and Systems, 1.1:37-50.
  3. Kang, J.H. 2013. Positive equilibrium solutions to general population model.  International Journal of Pure and Applied Mathematics, 86.6:1009-1019.
  4. Kang, J.H., 2011.  Perturbation of a nonlinear elliptic biological interacting model with multiple species.  Communications in Mathematics and Applications, 2.2-3:61-76.
  5. Kang, J.H., & Lee, J.H., 2010. A predator-prey biological model with combined self-limitation and competition terms. Czechoslovak Mathematical Journal, 60.1:283-295.
  6. Chase, B., & Kang, J.H., 2009. Positive solutions to an elliptic biological model, Global Journal of Pure and Applied Mathematics, 5.2:101-108.
  7. Ibanez, B., Kang, J.H., & Lee, J.H., 2009. Non-negative steady state solutions to an elliptic biological model. International Journal of Pure and Applied Mathematics,.53.3:385-394.
  8. Kang, J. H., and Lee, J.H., 2009. A predator-prey biological model with combined reproduction, self-limitation terms and general competition rates. Journal of Advanced Research in Differential Equations, 1.1:1-10.
  9. Kang, J. H., 2008. Steady state problem of a cooperation model with combined reproduction and self-limitation rates. International Journal of Pure and Applied Mathematics, 48.3:373-384.
  10. Kang, J. H. and Lee, J.H., 2008. The non-existence and existence of positive solution to the cooperation model with general cooperation rates. Korean Journal of Mathematics, 16.3:391-401.
  11. Kang, J. H., 2008. A cooperative biological model with combined self-limitation and cooperation terms. Journal of Computational Mathematics and Optimization, 4.2:113-126.
  12. Lizarraga, K.M., Kang, J.H., & Lee, J.H., 2006. Perturbation of a nonlinear elliptic biological interacting model. Dynamics of Partial Differential Equations, 3.4:281-293.
  13. Kang, J.H., & Lee, J.H., 2006. Steady state coexistence solutions of reaction-diffusion competition models. Czechoslovak Mathematical Journal, 56.131:1165-1183.
  14. Oh, Y.M., & Kang, J.H., 2005. Lagrangian H-Umbilical submanifolds in quaternion Euclidean spaces. Tsukuba Journal of Mathematics, 29.1:233-245.
  15. Oh, Y.M., & Kang, J.H., 2004. The explicit representation of flat lagrangian H-Umbilical submanifolds in quaternion Euclidean spaces. Mathematical Journal of Toyoma University, 27:101-110.
  16. Kang, J.H., & Lee, J.H., 2004. Steady state with small change of reproduction and self-limitation. International Journal of Differential Equations and Applications, 9.2:109-126.
  17. Bang, K.S., Kang, J.H., & Oh. Y.M., 2004. Uniqueness of coexistence state with small perturbation. Far East Journal of Mathematical Science, 14.1:27-42.
  18. Kang, J.H., Lee, J.H.,& Oh, Y.M., 2004. The existence, nonexistence and uniqueness of global positive coexistence of a nonlinear elliptic biological interacting model. Kangweon-Kyungki Math. Journal. 12.1:77-90.
  19. Kang, J.H., & Oh, Y.M., 2004. The existence and uniqueness of a positive solution of an elliptic system. Journal of Partial Differential Equations, 17. No.1:29-48.
  20. Kang, J.H., & Oh, Y.M., 2002. Uniqueness of coexistence state of general competition model for several competing species. Kyungpook Mathematical Journal, 42.2:391-398.
  21. Kang, J.H., & Oh, Y.M. 2002. A sufficient condition for the uniqueness of positive steady state to a reaction diffusion system. Journal of the Korean Mathematical Society, 39.3:377-385.
Phone: 269-471-3423   Email: math@andrews.edu
Andrews University is a Seventh-day Adventist institution of higher education
Phone: 1-800-253-2874   E-mail: enroll@andrews.edu
Copyright © 2014 Andrews University
Berrien Springs, Michigan 49104